Kernel minimum error entropy algorithm

Neurocomputing - Tập 121 - Trang 160-169 - 2013
Badong Chen1, Zejian Yuan1, Nanning Zheng1, José C. Príncipe2
1Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

Tài liệu tham khảo

Vapnik, 1995 Scholkopf, 2002 Girosi, 1995, Regularization theory and neural networks architectures, Neural Comput., 7, 219, 10.1162/neco.1995.7.2.219 Scholkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467 Kivinen, 2004, Online learning with kernels, IEEE Trans. Signal Process., 52, 2165, 10.1109/TSP.2004.830991 Orabona, 2009, Bounded kernel-based online learning, J. Mach. Learn. Res., 10, 2643 Liu, 2010 Liu, 2008, The kernel least mean square algorithm, IEEE Trans. Signal Process., 56, 543, 10.1109/TSP.2007.907881 Liu, 2008, Kernel affine projection algorithm, EURASIP J. Adv. Signal Process., 10.1155/2008/784292 Engel, 2004, The kernel recursive least-squares algorithm, IEEE Trans. Signal Process., 52, 2275, 10.1109/TSP.2004.830985 Liu, 2009, Extended extended kernel recursive least squares algorithm, IEEE Trans. Signal Process., 57, 3801, 10.1109/TSP.2009.2022007 Principe, 2010 Erdogmus, 2002, An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems, IEEE Trans. Signal Process., 50, 1780, 10.1109/TSP.2002.1011217 Erdogmus, 2006, From linear adaptive filtering to nonlinear information processing—the design and analysis of information processing systems, IEEE Signal Process. Mag., 23, 14, 10.1109/SP-M.2006.248709 Erdogmus, 2002, J.C. Principe, Generalized information potential criterion for adaptive system training, IEEE Trans. on Neural Networks, 13, 1035, 10.1109/TNN.2002.1031936 Santamaria, 2002, Entropy minimization for supervised digital communications channel equalization, IEEE Trans. Signal Process., 50, 1184, 10.1109/78.995074 Chen, 2007, Stochastic gradient algorithm under (h, ϕ)-entropy criterion, Circ. Syst. Signal Process., 26, 941, 10.1007/s00034-007-9004-9 Silverman, 1986 S. Zhao, B. Chen, J. C. Principe, Kernel adaptive filtering with maximum correntropy criterion, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2012–2017, 2011. Liu, 2007, , Correntropy: properties and applications in non-Gaussian signal processing, IEEE Trans. Signal Process., 55, 5286, 10.1109/TSP.2007.896065 Erdogmus, 2003, Online entropy manipulation: stochastic information gradient, IEEE Signal Process. Lett., 10, 242, 10.1109/LSP.2003.814400 Sayed, 2003 1976, 2 Burbea, 1982, Entropy differential metric, distance and divergence measures in probability spaces: a unified approach, J. Multivar. Anal., 12, 575, 10.1016/0047-259X(82)90065-3 Platt, 1991, A resource-allocating network for function interpolation, Neural Comput., 3, 213, 10.1162/neco.1991.3.2.213 Richard, 2009, Online prediction of time series data with kernels, IEEE Trans. Signal Process., 57, 1058, 10.1109/TSP.2008.2009895 Liu, 2009, An information theoretic approach of designing sparse kernel adaptive filters, IEEE Trans. Neural Networks, 20, 1950, 10.1109/TNN.2009.2033676 Chen, 2012, Quantized kernel least mean square algorithm, IEEE Trans. Neural Networks Learn. Syst., 23, 22, 10.1109/TNNLS.2011.2178446 Chen, 2012, Mean square convergence analysis of the kernel least mean square algorithm, Signal Process., vol. 92, 2624, 10.1016/j.sigpro.2012.04.007 Chen, 1992, Recursive hybrid algorithm for non-linear system identification using radial basis function networks, Int. J. Control, 55, 1051, 10.1080/00207179208934272