Kernel minimum error entropy algorithm
Tài liệu tham khảo
Vapnik, 1995
Scholkopf, 2002
Girosi, 1995, Regularization theory and neural networks architectures, Neural Comput., 7, 219, 10.1162/neco.1995.7.2.219
Scholkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467
Kivinen, 2004, Online learning with kernels, IEEE Trans. Signal Process., 52, 2165, 10.1109/TSP.2004.830991
Orabona, 2009, Bounded kernel-based online learning, J. Mach. Learn. Res., 10, 2643
Liu, 2010
Liu, 2008, The kernel least mean square algorithm, IEEE Trans. Signal Process., 56, 543, 10.1109/TSP.2007.907881
Liu, 2008, Kernel affine projection algorithm, EURASIP J. Adv. Signal Process., 10.1155/2008/784292
Engel, 2004, The kernel recursive least-squares algorithm, IEEE Trans. Signal Process., 52, 2275, 10.1109/TSP.2004.830985
Liu, 2009, Extended extended kernel recursive least squares algorithm, IEEE Trans. Signal Process., 57, 3801, 10.1109/TSP.2009.2022007
Principe, 2010
Erdogmus, 2002, An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems, IEEE Trans. Signal Process., 50, 1780, 10.1109/TSP.2002.1011217
Erdogmus, 2006, From linear adaptive filtering to nonlinear information processing—the design and analysis of information processing systems, IEEE Signal Process. Mag., 23, 14, 10.1109/SP-M.2006.248709
Erdogmus, 2002, J.C. Principe, Generalized information potential criterion for adaptive system training, IEEE Trans. on Neural Networks, 13, 1035, 10.1109/TNN.2002.1031936
Santamaria, 2002, Entropy minimization for supervised digital communications channel equalization, IEEE Trans. Signal Process., 50, 1184, 10.1109/78.995074
Chen, 2007, Stochastic gradient algorithm under (h, ϕ)-entropy criterion, Circ. Syst. Signal Process., 26, 941, 10.1007/s00034-007-9004-9
Silverman, 1986
S. Zhao, B. Chen, J. C. Principe, Kernel adaptive filtering with maximum correntropy criterion, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2012–2017, 2011.
Liu, 2007, , Correntropy: properties and applications in non-Gaussian signal processing, IEEE Trans. Signal Process., 55, 5286, 10.1109/TSP.2007.896065
Erdogmus, 2003, Online entropy manipulation: stochastic information gradient, IEEE Signal Process. Lett., 10, 242, 10.1109/LSP.2003.814400
Sayed, 2003
1976, 2
Burbea, 1982, Entropy differential metric, distance and divergence measures in probability spaces: a unified approach, J. Multivar. Anal., 12, 575, 10.1016/0047-259X(82)90065-3
Platt, 1991, A resource-allocating network for function interpolation, Neural Comput., 3, 213, 10.1162/neco.1991.3.2.213
Richard, 2009, Online prediction of time series data with kernels, IEEE Trans. Signal Process., 57, 1058, 10.1109/TSP.2008.2009895
Liu, 2009, An information theoretic approach of designing sparse kernel adaptive filters, IEEE Trans. Neural Networks, 20, 1950, 10.1109/TNN.2009.2033676
Chen, 2012, Quantized kernel least mean square algorithm, IEEE Trans. Neural Networks Learn. Syst., 23, 22, 10.1109/TNNLS.2011.2178446
Chen, 2012, Mean square convergence analysis of the kernel least mean square algorithm, Signal Process., vol. 92, 2624, 10.1016/j.sigpro.2012.04.007
Chen, 1992, Recursive hybrid algorithm for non-linear system identification using radial basis function networks, Int. J. Control, 55, 1051, 10.1080/00207179208934272