Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: Dealing with imbalanced training data
Tài liệu tham khảo
Abedi, 2012, Support vector machine for multi-classification of mineral prospectivity areas, Comput. Geosci., 46, 272, 10.1016/j.cageo.2011.12.014
Abedi, 2013, Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping, Int. J. Appl. Earth Obs. Geoinf., 21, 556, 10.1016/j.jag.2012.07.012
Agterberg, 2005, Measuring the performance of mineral-potential maps, Nat. Resour. Res., 14, 1, 10.1007/s11053-005-4674-0
Althoff, 2000, 2.8–3.0 Ga plutonism and deformation in the SE Amazonian craton: the Archaean granitoids of Marajoara (Carajás Mineral Province, Brazil), Precambrian Res., 104, 187, 10.1016/S0301-9268(00)00103-0
An, 1991, Application of fuzzy set theory for integration of geological, geophysical and remote sensing data, Can. J. Explor. Geophys., 27, 1
Barros, 2001, Pb–Pb and U-Pb zircon ages of Archean syntectonic granites of the Carajás metallogenic province, northern Brazil, 94
Batista, 2004, A study of the behavior of several methods for balancing machine learning training data, ACM SIGKDD Explor. Newsl., 6, 20, 10.1145/1007730.1007735
2019, Science, 363, eaau0323, 10.1126/science.aau0323
Bonham-Carter, 1994, Geographic information systems for geoscientists-modeling with GIS, Comput. methods Geosci., 13, 398
Bonham-Carter, 1988, Integration of Geological Data Sets for Gold Exploration in Nova Scotia, Photogramm. Engeneering Remote Sens., 54, 1585
Boots, 1988
Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655
Brown, 2000, Artificial neural networks: a new method for mineral prospectivity mapping, Aust. J. earth Sci., 47, 757, 10.1046/j.1440-0952.2000.00807.x
Burkov, 2019
Carranza, 2011, Geocomputation of mineral exploration targets, Comput. Geosci., 37, 1907, 10.1016/j.cageo.2011.11.009
Carranza, 2009, Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity, Comput. Geosci., 35, 2032, 10.1016/j.cageo.2009.02.008
Carranza, 2008, Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Handbook of exploration and environmental geochemistry; 11, Elsevier
Carranza, 2016, Data-Driven Predictive Modeling of Mineral Prospectivity Using Random Forests: A Case Study in Catanduanes Island (Philippines), Nat. Resour. Res., 25, 35, 10.1007/s11053-015-9268-x
Carranza, 2015, Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm, Ore Geol. Rev., 71, 777, 10.1016/j.oregeorev.2014.08.010
Carranza, 2015, Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines), Comput. Geosci., 74, 60, 10.1016/j.cageo.2014.10.004
Chawla, 2002, SMOTE: Synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321, 10.1613/jair.953
2004, SIGKDD Explor. Newsl., 6, 1, 10.1145/1007730.1007733
Chen, 2014, A method for mineral prospectivity mapping integrating C4.5 decision tree, weights-of-evidence and m-branch smoothing techniques: A case study in the eastern Kunlun Mountains, China. Earth Sci. Informatics, 7, 13, 10.1007/s12145-013-0128-0
Chen, 2017, Mapping mineral prospectivity using an extreme learning machine regression, Ore Geol. Rev., 80, 200, 10.1016/j.oregeorev.2016.06.033
Chen, 2017, Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data, Geochemistry Explor. Environ. Anal., 17, 231, 10.1144/geochem2016-024
Chen, 2016, A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis, Ore Geol. Rev., 74, 26, 10.1016/j.oregeorev.2015.11.011
Cheng, 2007, Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev., 32, 314, 10.1016/j.oregeorev.2006.10.002
Cordani, 2007, Proterozoic accretionary belts in the Amazonian Craton, Geol. Soc. Am. Mem., 200, 297
Craveiro, 2019, 49
Dall’Agnol, R., Lafon, J.-M., Macambira, M.J.B., 1994. Proterozoic anorogenic magmatism in the Central Amazonian Province, amazonian araton: Geochronological, petrological and geochemical aspects. Mineral. Petrol. 50, 113–138. https://doi.org/10.1007/BF01160143.
Dall’Agnol, R., Souza, Z.S., Althoff, F.J., Barros, C.E.M., Leite, A.A.S., Jorge-João, X.S., General aspects of the granitogenesis of the Carajás metallogenetic province 1997 Excursion Guide Salvador 135 161.
Dall’Agnol, R., Teixeira, N.P., Rämö, O.T., Moura, C.A. V, Macambira, M.J.B., de Oliveira, D.C., Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil Lithos 80 2005 101 129.
de Oliveira, M.A., Dall’Agnol, R., Althoff, F.J., da Silva Leite, A.A., 2009. Mesoarchean sanukitoid rocks of the Rio Maria granite-greenstone terrane, Amazonian Craton, Brazil. J. South Am. Earth Sci. 27, 146–160.
de Souza, Z.S., Potrel, A., Lafon, J.-M., Althoff, F.J., Pimentel, M.M., Dall’Agnol, R., de Oliveira, C.G., 2001. Nd, Pb and Sr isotopes in the Identidade Belt, an Archaean greenstone belt of the Rio Maria region (Carajás Province, Brazil): implications for the Archaean geodynamic evolution of the Amazonian Craton. Precambrian Res. 109, 293–315.
deMelo, 2017, Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology, Miner. Depos., 52, 709, 10.1007/s00126-016-0693-5
Diggle, 1983
DOCEGEO, 1988. Revisão litoestratigráfica da Província Mineral de Carajás, in: Proceedings of the Brazilian Congress of Geology, Vol. 1. pp. 11–56.
Domingos, 1999
Drummond, C., Holte, R.C., 2003. Erratum: Structure, Properties, and Dynamics of Oxygen Vacancies in Amorphous [Formula presented] [Phys. Rev. Lett. 89, 285505 (2002)]. Phys. Rev. Lett. 91. https://doi.org/10.1103/PhysRevLett.91.039901.
Elkan, 2001, The foundations of cost-sensitive learning, Int. Jt. Conf. Artif. Intell., 973
Farias, 1982, Jazida de cobre Salobo 3A, Simp. Geol. da Amaz., 61
Fedi, 2001, Detection of potential fields source boundaries by enhanced horizontal derivative method, Geophys. Prospect., 49, 40, 10.1046/j.1365-2478.2001.00235.x
Feio, G.R.L., Dall’Agnol, R., Dantas, E.L., Macambira, M.J.B., Santos, J.O.S., Althoff, F.J., Soares, J.E.B., 2013. Archean granitoid magmatism in the Canaã dos Carajás area: implications for crustal evolution of the Carajás province, Amazonian craton, Brazil. Precambrian Res. 227, 157–185.
Ferreira Filho, 2007, 1
Fonseca, 2004, The Araguaia Belt, Brazil: Part Of A Neoproterozoic Continental-Scale Strike-Slip Fault System, J. Virtual Explor., 17, 10.3809/jvirtex.2004.00107
Ford, 2008, Evaluating geological complexity and complexity gradients as controls on copper mineralisation, Mt Isa Inlier
Ford, 2016, A comparative analysis of weights of evidence, evidential belief functions, and fuzzy logic for mineral potential mapping using incomplete data at the scale of investigation, Nat. Resour. Res., 25, 19, 10.1007/s11053-015-9263-2
Y. Freund Boosting a Weak Learning Algorithm by Majority Inf. Comput. 121 1995 256 285 https://doi.org/https://doi.org/10.1006/inco.1995.1136.
Galarza, 2007, Dating and isotopic characteristics (Pb and S) of the Fe oxide-Cu-Au-U-REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci., 25, 377, 10.1016/j.jsames.2007.07.006
Gao, 2016, Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geol. Rev., 75, 16, 10.1016/j.oregeorev.2015.12.005
Gibbs, 1986, Age and composition of the Grão Pará Group volcanics, Serra dos Carajás. Rev. Bras. Geociências, 16, 201, 10.25249/0375-7536.1986201211
P.A. Gillespie C.B. Howard J.J. Walsh J. Watterson Measurement and characterisation of spatial distributions of fractures Tectonophysics 226 1993 113 141 https://doi.org/https://doi.org/10.1016/0040-1951(93)90114-Y.
Grainger, 2008, Metallogenesis of the Carajas Mineral Province, Southern Amazon Craton, Brazil : Varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation, Ore Geol. Rev., 33, 451, 10.1016/j.oregeorev.2006.10.010
J. Granek G.I. Facility B. Columbia Advanced Geoscience Targeting via Focused Machine Learning Applied to the QUEST Project Dataset, British Columbia 117–126 2016 https://doi.org/10.14288/1.0340340.
Granek, J., Haber, E., 2015. Data mining for real mining: A robust algorithm for prospectivity mapping with uncertainties 145–153. https://doi.org/10.1137/1.9781611974010.17.
Groves, 2010, Iron oxide copper-gold (IOCG) deposits through earth histoiy: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits, Econ. Geol., 105, 641, 10.2113/gsecongeo.105.3.641
Groves, 2001, The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron-oxide copper-gold-rare earth element deposit group?, Miner. Depos., 36, 189, 10.1007/s001260050298
Groves, 2005, Controls on the heterogeneous distribution of mineral deposits through time. Geol. Soc. London, Spec. Publ., 248, 71, 10.1144/GSL.SP.2005.248.01.04
GSB/CPRM - Geological Survey of Brazil, 2015a. Projeto Aerogeofísico Oeste de Carajás: relatório final do levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Programa Geologia do Brasil - PGB.
GSB/CPRM - Geological Survey of Brazil, 2015b. Projeto Aerogeofísico Rio Maria: relatório final do levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Programa Geologia do Brasil - PGB.
GSB/CPRM - Geological Survey of Brazil, 2015c. Levantamento Aerogravimétrico Carajás: relatório final do levantamento e processamento dos dados magnetométricos e gravimétricos. Programa Geologia do Brasil - PGB.
GSB/CPRM - Geological Survey of Brazil, 2010. Projeto Aerogeofísico Tucuruí: relatório final do levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Programa Geologia do Brasil - PGB.
GSB/CPRM - Geological Survey of Brazil, 2004. Projeto Aerogeofísico Anapu-Tuerê: relatório final do levantamento e processamento dos dados magnetométricos e gamaespectrométricos. Programa Geologia do Brasil - PGB.
Haddad-Martim, 2017, Spatial analysis of mineral deposit distribution: A review of methods and implications for structural controls on iron oxide-copper-gold mineralization in Carajas, Brazil. Ore Geol. Rev., 81, 230, 10.1016/j.oregeorev.2016.09.038
Hariharan, 2017, Random Forest-Based Prospectivity Modelling of Greenfield Terrains Using Sparse Deposit Data: An Example from the Tanami Region, Western Australia, Nat. Resour. Res., 26, 489, 10.1007/s11053-017-9335-6
Harris, 1999, Mineral Favorability Mapping : A Comparison of Artificial Neural Networks, Logistic Regression, and Discriminant Analysis, 8, 93
2009, IEEE Trans. Knowl. Data Eng., 21, 1263, 10.1109/TKDE.2008.239
Herman, 2017, SALib: an open-source Python library for sensitivity analysis, J. Open Source Softw., 2, 97, 10.21105/joss.00097
Hirata, 1989, Fractal dimension of fault systems in Japan: fractal structure in rock fracture geometry at various scales, Fractals in Geophysics. Springer, 157, 10.1007/978-3-0348-6389-6_9
Hodkiewicz, 2003
Hornby, 1999, Analysis of potential field data in the wavelet domain, Geophys. J. Int., 137, 175, 10.1046/j.1365-246x.1999.00788.x
Huhn, S.R.B., Souza, C.I. de J., Albuquerque, M.C. de, Leal, E.D., Brustolin, V., 1999. Descoberta do depósito Cu (Au) Cristalino: geologia e mineralização associada-Região da Serra do Rabo-Carajás-PA. SBG/Núcleo Norte, Simpósio Geol. da Amaz. 6, 140–143.
Jacobsen, 1987, A case for upward continuation as a standard separation filter for potential-field maps, Geophysics, 52, 1138, 10.1190/1.1442378
Japkowicz, 2001, Supervised versus unsupervised binary-learning by feedforward neural networks, Mach. Learn., 42, 97, 10.1023/A:1007660820062
Japkowicz, 2002, The class imbalance problem: A systematic study, Intell. Data Anal., 6, 429, 10.3233/IDA-2002-6504
Jiang, L., Li, C., Cai, Z., Zhang, H., 2013. Sampled bayesian network classifiers for class-imbalance and cost-sensitive learning. Proc. - Int. Conf. Tools with Artif. Intell. ICTAI 512–517. https://doi.org/10.1109/ICTAI.2013.82.
P. Juszczak D. Tax R.P.W. Duin 2002 95 102.
Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V., 2017. Machine Learning for the Geosciences: Challenges and Opportunities 1–12.
Leite, 2009, Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophys. Prospect., 57, 1049, 10.1111/j.1365-2478.2008.00779.x
Lemaître, 2017, Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning, J. Mach. Learn. Res., 18, 1
Li, 2019, Prospectivity Mapping for Tungsten Polymetallic Mineral Resources, Nanling Metallogenic Belt, South China: Use of Random Forest Algorithm from a Perspective of Data Imbalance, Nat. Resour. Res.
Lindenmayer, 2003, Depósito de Cu–Au do Salobo, Serra dos Carajás: Uma revisão. Caracter. e Model. depósitos minerais, Ed. Unisinos, São Leopoldo, 69
Lindenmayer, Z.G., Fleck, A., Gomes, C.H., Santos, A.B.S., Caron, R., Paula, F. de C., Laux, J.H., Pimentel, M.M., Sardinha, A.S., Marini, O.J., others, 2005. Caracterização geológica do alvo Estrela (Cu-Au), Serra dos Carajás, Pará, in: Caracterização de Depósitos Minerais Em Distritos Mineiros Da Amazônia. DNPM, CT-Mineral/FINEP, ADIMB, p. 74p.
Liu, 2014, Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. J. Earth Sci., 25, 689
Machado, 1991, U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res., 49, 329, 10.1016/0301-9268(91)90040-H
B.B. Mandelbrot The fractal geometry of nature. WH freeman 1983 New York.
Manevitz, 2001, One-class SVMs for document classification, J. Mach. Learn. Res., 2, 139
Martins, 2017, Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: Petrography, geochemistry and tectonic significance of basalts from the Carajás Basin, Precambrian Res., 302, 340, 10.1016/j.precamres.2017.10.013
McCuaig, 2010, Translating the mineral systems approach into an effective exploration targeting system, Ore Geol. Rev., 38, 128, 10.1016/j.oregeorev.2010.05.008
McKay, 2016, Comparison of the Data-Driven Random Forests Model and a Knowledge-Driven Method for Mineral Prospectivity Mapping: A Case Study for Gold Deposits Around the Huritz Group and Nueltin Suite, Nunavut, Canada. Nat. Resour. Res., 25, 125, 10.1007/s11053-015-9274-z
Motta, J.G., Souza Filho, C.R. d., Carranza, E.J.M., Braitenberg, C., 2019. Archean crust and metallogenic zones in the Amazonian Craton sensed by satellite gravity data. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-39171-9.
Nykänen, 2008, Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Aust. J. Earth Sci., 55, 39, 10.1080/08120090701581380
R.G. de Oliveira Insights on the framework of the Carajás Province, Amazonian Craton, Brazil, and on the three-dimensional shape of the Carajás Basin, based on gravity data J. Geol. Surv. Brazil 1 2018 101 112 https://doi.org/https://doi.org/10.29396/jgsb.2018.v1.n3.1.
Pan, 2000
Pedregosa, 2011, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825
Person, 2008, Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits, Geosphere, 4, 888, 10.1130/GES00150.1
Pidgeon, 2000, Th-U-Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajas Province, Brazil: Evidence for the ages of granulite facies metamorphism and the protolith of the enderbite, Chem. Geol., 166, 159, 10.1016/S0009-2541(99)00190-4
Pimentel, 2003, Geochronology and ND isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajás, Brazil: 1.8-1.7 Ga hydrothermal alteration and mineralization, J. South Am. Earth Sci., 15, 803, 10.1016/S0895-9811(02)00127-X
Plutowski, 1994, Cross-validation estimates IMSE, Advances in Neural Information Processing Systems., 391
Pollard, 2019, 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models, Miner. Depos., 54, 329, 10.1007/s00126-018-0809-1
Porwal, 2003, Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from Aravalli Province, Western India, Nat. Resour. Res., 12, 155, 10.1023/A:1025171803637
Porwal, 2010, SVM-based base-metal prospectivity modeling of the Aravalli Orogen, northwestern India, EGU Gen. Assem., 12, 15171
Prado, E.M.G., 2020. https://github.com/Eliasmgprado/GeologicalComplexity_SMOTE. https://doi.org/10.5281/zenodo.3659186.
Quinlan, 1991, Improved estimates for the accuracy of small disjuncts, Mach. Learn., 6, 93, 10.1007/BF00153762
Radford, 2018, Geological Mapping in Western Tasmania Using Radar and Random Forests. IEEE J, Sel. Top. Appl. Earth Obs. Remote Sens., 11, 3075, 10.1109/JSTARS.2018.2855207
Requia, 2000, The Salobo iron oxide copper-gold deposit, Carajás, northern Brazil. Hydrothermal Iron-Oxide Copper-Gold Relat, Depos. A Glob. Perspect. Adelaide, Aust. Miner., Found, 225
Requia, 2003, Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil, Miner. Depos., 38, 727, 10.1007/s00126-003-0364-1
Rodriguez-Galiano, 2015, Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines, Ore Geol. Rev., 71, 804, 10.1016/j.oregeorev.2015.01.001
Rodriguez-Galiano, 2014, Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain, Int. J. Geogr. Inf. Sci., 28, 1336, 10.1080/13658816.2014.885527
Roest, 1992, Magnetic interpretation using the 3-D analytic signal, GEOPHYSICS, 57, 116, 10.1190/1.1443174
Ronzê, P.C., Soares, A.D. V, Santos, M.G.S. dos, Barreira, C.F., 2000. Alemão copper-gold (U-REE) deposit, Carajás, Brazil. Hydrothermal iron oxide copper-gold Relat. Depos. a Glob. Perspect. Aust. Miner. Found. Adelaide 191–202.
Santos, 2000, A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd geochronology, Gondwana Res., 3, 453, 10.1016/S1342-937X(05)70755-3
Schölkopf, 2001, Estimating the support of a high-dimensional distribution, Neural Comput., 13, 1443, 10.1162/089976601750264965
Shabankareh, 2017, Application of support vector machines for copper potential mapping in Kerman region, Iran. J. African Earth Sci., 128, 116, 10.1016/j.jafrearsci.2016.11.032
Shahin, 2004, Data division for developing neural networks applied to geotechnical engineering, J. Comput. Civ. Eng., 18, 105, 10.1061/(ASCE)0887-3801(2004)18:2(105)
Shives, 2000, The detection of potassic alteration by gamma-ray spectrometry - Recognition of alteration related to mineralization, Geophysics, 65, 10.1190/1.1444884
Singer, 1996, Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district, Japan. Math. Geol., 28, 1017, 10.1007/BF02068587
Soares, 1999, Geologia e mineralizações do depósito Cu-Au Alemão, Província Mineral de Carajás, PA. SBG, 6o Simpósio Geol. da Amaz, Manaus, AM. Resumos, Expand, 144
Sobol, 2001, Global sensitivity indices for rather complex mathematical models can be efficiently computed by Monte Carlo (or quasi-Monte Carlo) methods, Math Comput Simul, 55, 271
Souza, 2000, Salobo 3 Alpha deposit: geology and mineralization. Hydrothermal iron oxide copper–gold Relat. Depos. a Glob, Perspect. Aust. Miner. Found. Adelaide, 213
Souza, 1996, Novos dados geocronológicos para os granitos deformados do Rio Itacaiúnas (Serra dos Carajás, PA, Brazil): implicações estratigráficas, Annals of the Amazon Geologic Symposium, Expanded Abstracts., 380
Sun, 2009, Classification of Imbalanced Data: a Review, Int. J. Pattern Recognit. Artif. Intell., 23, 687, 10.1142/S0218001409007326
Swingler, 1996
Tallarico, 2017, The Igarapé Bahia Cu-Au mineralization, Carajás Province. Rev. Bras. Geociências, 30, 230, 10.25249/0375-7536.2000302230233
Tallarico, 2004, Geological and SHRIMP II U-Pb constraints on the age and origin of the Breves Cu-Au-(W-Bi-Sn) deposit, Carajás, Brazil. Miner. Depos., 39, 68, 10.1007/s00126-003-0383-y
Tassinari, 1999, Geochronological provinces of the Amazonia craton, Episodes, 22, 174, 10.18814/epiiugs/1999/v22i3/004
Tax, 2001
Tazava, 2000, The Igarapé Bahia Au-Cu-(REE-U) deposit, Carajás Mineral Province, Northern Brazil. Hydrothermal iron oxide copper-gold Relat, Depos. A Glob. Perspect., 1, 203
Torresi, 2012, Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis, Miner. Depos., 47, 299, 10.1007/s00126-011-0373-4
Van Rijsbergen, 1979
Vapnik, 1963, Pattern recognition using generalized portrait method, Autom. Remote Control, 24, 774
Vapnik, 2000, The Nature of Statistical Learning Theory, Springer, New York, New York, NY.
Vasquez, 2008, Geologia e recursos minerais do estado do Pará: texto explicativo. Escala 1: 1.000.000, Programa Geol. do Bras. - PGB.
Vieira, 1988, Caracterização geológica da jazida polimetálica do Salobo 3 A-Reavaliação, SBG, Congresso Brasileiro Geologia., 97
J.J. Walsh J. Watterson Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies J. Struct. Geol. 15 1993 1509 1512 https://doi.org/https://doi.org/10.1016/0191-8141(93)90010-8.
J. Wang R. Zuo Y. Xiong Mapping Mineral Prospectivity via Semi-supervised Random Forest 2019 Resour. Res Nat 10.1007/s11053-019-09510-8.
Wirth, 1986, U-Pb ages of zircons from the Grao-Para Group and Serra dos Carajas Granite, Para, Brazil. Rev. Bras. Geociencias, 16, 195, 10.25249/0375-7536.1986195200
Xavier, R.P., Soares Monteiro, L.V., Moreto, C.P.N., Pestilho, A.L.S., Coelho de Melo, G.H., Delinardo da Silva, M.A., Aires, B., Ribeiro, C., Freitas e Silva, F.H., 2012. The Iron Oxide Copper-Gold Systems of the Carajás Mineral Province, Brazil. SEG Spec. Publ. 16, 433–454.
Xiong, 2018, GIS-based rare events logistic regression for mineral prospectivity mapping, Comput. Geosci., 111, 18, 10.1016/j.cageo.2017.10.005
Xiong, 2017, Effects of misclassification costs on mapping mineral prospectivity, Ore Geol. Rev., 82, 1, 10.1016/j.oregeorev.2016.11.014
Xiong, 2016, Recognition of geochemical anomalies using a deep autoencoder network, Comput. Geosci., 86, 75, 10.1016/j.cageo.2015.10.006
Xiong, 2018, Mapping mineral prospectivity through big data analytics and a deep learning algorithm, Ore Geol. Rev., 102, 811, 10.1016/j.oregeorev.2018.10.006
M. Yousefi O.P. Kreuzer V. Nykänen J.M.A. Hronsky Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting Ore Geol. Rev. 111 2019 103005 https://doi.org/https://doi.org/10.1016/j.oregeorev.2019.103005.
B. Zadrozny C. Elkan Learning and Making Decisions when Costs and Probabilities Are Both Unknown 2001 New York, NY, USA 204 213 10.1145/502512.502540.
B. Zadrozny J. Langford N. Abe 2003 435.
Zandiyyeh, 2016, Prospectivity mapping of Iron Oxide-Copper-Gold (IOCG) deposits using support vector machine method in Feyzaabad area (east of Iran), J. Himal. Earth Sci., 49, 50
Zhang, 2018, Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Sci. Informatics, 11, 553, 10.1007/s12145-018-0346-6
Zhang, 2016, A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Sci. China Earth Sci., 59, 556, 10.1007/s11430-015-5178-3
Zhou, 2006, Training cost-sensitive neural networks with methods addressing the class imbalance problem, IEEE Trans. Knowl. Data Eng., 18, 63, 10.1109/TKDE.2006.17
Zuo, 2011, Support vector machine: A tool for mapping mineral prospectivity, Comput. Geosci., 37, 1967, 10.1016/j.cageo.2010.09.014
Zuo, 2018, Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods, Nat. Resour. Res., 27, 5, 10.1007/s11053-017-9357-0