Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function

Nature - Tập 514 Số 7524 - Trang 628-632 - 2014
Andrea Viale1, Piergiorgio Pettazzoni1, Costas A. Lyssiotis2, Haoqiang Ying1, Nora S. Sánchez1, Matteo Marchesini1, Alessandro Carugo1, Tessa Green1, Sahil Seth3, Virginia Giuliani3, Maria Kost‐Alimova3, Florian L. Müller1, Simona Colla1, Luigi Nezi1, Giannicola Genovese1, Angela K. Deem1, Avnish Kapoor1, Wantong Yao4, Emanuela Brunetto5, Ya’an Kang6, Min Yuan7, John M. Asara7, Y. Alan Wang1, Timothy P. Heffernan3, Alec C. Kimmelman8, Huamin Wang9, Jason B. Fleming6, Lewis C. Cantley2, Ronald A. DePinho10, Giulio Draetta4
1Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
2Department of Medicine, Weill Cornell Medical College, New York, 10065, New York, USA
3Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
4Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
5Pathology Unit, San Raffaele Scientific Institute, Milan 20132, Italy,
6Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
7Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, 02115, Massachusetts, USA
8Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
9Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA
10Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, 77030, Texas, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012)

Karnoub, A. E. & Weinberg, R. A. Ras oncogenes: split personalities. Nature Rev. Mol. Cell Biol. 9, 517–531 (2008)

Kantarjian, H. et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med. 346, 645–652 (2002)

Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010)

Quintas-Cardama, A., Kantarjian, H. & Cortes, J. Imatinib and beyond—exploring the full potential of targeted therapy for CML. Nature Rev. Clin. Oncol. 6, 535–543 (2009)

Jang, S. & Atkins, M. B. Which drug, and when, for patients with BRAF-mutant melanoma? Lancet Oncol. 14, e60–e69 (2013)

Bardeesy, N. et al. Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006)

Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323 (2007)

Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007)

Kim, M. P. et al. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS ONE 6, e20636 (2011)

Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011)

Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nature Protocols 7, 872–881 (2012)

Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011)

Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013)

Vizan, P. et al. K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice fibroblasts. Cancer Res. 65, 5512–5515 (2005)

Liu, Y. & Schubert, D. R. The specificity of neuroprotection by antioxidants. J. Biomed. Sci. 16, 98 (2009)

Kim, M. P. et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols 4, 1670–1680 (2009)

Shi, Y. et al. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl Acad. Sci. USA 109, 16510–16515 (2012)

Škrtić, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011)

Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009)

Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011)

Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011)

Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010)

Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013)

Samudio, I. et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 120, 142–156 (2010)

Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008)

Zheng, W., Talley Watts, L., Holstein, D. M., Wewer, J. & Lechleiter, J. D. P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J. Cereb. Blood Flow Metab. 33, 600–611 (2013)

Itoh, Y., Abe, T., Takaoka, R. & Tanahashi, N. Fluorometric determination of glucose utilization in neurons in vitro and in vivo. J. Cereb. Blood Flow Metab. 24, 993–1003 (2004)

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)