Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion
Tài liệu tham khảo
Kunacheva, 2014, Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review, Water Res., 61, 1, 10.1016/j.watres.2014.04.044
Costerton, 1995, Microbial biofilms, Annu. Rev. Microbiol., 49, 711, 10.1146/annurev.mi.49.100195.003431
Perni, 2014, Success and failure of colloidal approaches in adhesion of microorganisms to surfaces, Adv. Colloid Interface Sci., 206, 265, 10.1016/j.cis.2013.11.008
Jian-Zhou, 2015, Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media, J. Hazard. Mater., 300, 467, 10.1016/j.jhazmat.2015.07.026
Peterson, 2015, Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges, FEMS Microbiol. Rev., 39, 234, 10.1093/femsre/fuu008
Ni, 2013, Formation processes of extracellular polymeric substances, 139
Basuvaraj, 2015, Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc, Water Res., 82, 104, 10.1016/j.watres.2015.05.014
Abu-Lail, 2003, Role of lipopolysaccharides in the adhesion retention, and transport of Escherichia coli JM109, Environ. Sci. Technol., 37, 2173, 10.1021/es026159o
Hall-Stoodley, 2002, Developmental regulation of microbial biofilms, Curr. Opin. Biotechnol., 13, 228, 10.1016/S0958-1669(02)00318-X
Liu, 2010, Contribution of extracellular polymeric substances (EPS) to the sludge aggregation, Environ. Sci. Technol., 44, 4355, 10.1021/es9016766
Hwang, 2012, Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa, Biofouling, 28, 525, 10.1080/08927014.2012.694138
Barnes, 2014, The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal, J. Memb. Sci., 466, 161, 10.1016/j.memsci.2014.04.046
Vu, 2009, Bacterial extracellular polysaccharides involved in biofilm formation, Molecules, 14, 2535, 10.3390/molecules14072535
Tuson, 2013, Bacteria-surface interactions, Soft Matter., 9, 4368, 10.1039/c3sm27705d
Dufrêne, 2015, Sticky microbes: forces in microbial cell adhesion, Trends Microbiol., 23, 376, 10.1016/j.tim.2015.01.011
Fang, 2002, Effects of toxic metals and chemicals on biofilm and biocorrosion, Water Res., 36, 4709, 10.1016/S0043-1354(02)00207-5
Ahimou, 2007, Effect of protein polysaccharide, and oxygen concentration profiles on biofilm cohesiveness, Appl. Environ. Microbiol., 73, 2905, 10.1128/AEM.02420-06
Markwell, 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 87, 206, 10.1016/0003-2697(78)90586-9
Harimawan, 2011, Bacteria attachment to surfacesAFM force spectroscopy and physicochemical analyses, J. Colloid Interface Sci., 364, 213, 10.1016/j.jcis.2011.08.021
Mann, 2012, Pseudomonas biofilm matrix composition and niche biology, FEMS Microbiol. Rev., 36, 893, 10.1111/j.1574-6976.2011.00322.x
Bjarnsholt, 2013, The role of bacterial biofilms in chronic infections, APMIS, 121, 1, 10.1111/apm.12099
Fahs, 2014, In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies, J. Phys. Chem. B., 118, 6702, 10.1021/jp5030872
Kim, 2000, Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides, Appl. Environ. Microbiol., 66, 976, 10.1128/AEM.66.3.976-981.2000
Knoshaug, 2000, Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352, J. Dairy Sci., 83, 633, 10.3168/jds.S0022-0302(00)74923-X
Harapanahalli, 2015, Influence of adhesion force on icaA and cidA gene expression and production of matrix components in Staphylococcus aureus biofilms, Appl. Environ. Microbiol., 81, 3369, 10.1128/AEM.04178-14
Görner, 2003, Activated sludge exopolymers: separation and identification using size exclusion chromatography and infrared micro-spectroscopy, Water Res., 37, 2388, 10.1016/S0043-1354(02)00553-5
Verhoef, 2005, Sugar composition and FTIR analysis of exopolysaccharides produced by microbial isolates from paper mill slime deposits, Biotechnol. Bioeng., 91, 91, 10.1002/bit.20494
Kodali, 2009, An exopolysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity, Food Res. Int., 42, 695, 10.1016/j.foodres.2009.02.007
Badireddy, 2010, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44, 4505, 10.1016/j.watres.2010.06.024
Zhang, 2014, Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation, Chemosphere, 117, 59, 10.1016/j.chemosphere.2014.05.070
Song, 2016, Antimicrobials influence bond stiffness and detachment of oral bacteria, J. Dent. Res., 1
Leone, 2006, The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides, Carbohydr. Res., 341, 2456, 10.1016/j.carres.2006.06.011
Wozniak, 2003, Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms, Proc. Natl. Acad. Sci., 100, 7907, 10.1073/pnas.1231792100
Hay, 2013, Microbial alginate production, modification and its applications, Microb. Biotechnol., 6, 637, 10.1111/1751-7915.12076
Shih, 2001, The production of poly-(γ-glutamic acid) from microorganisms and its various applications, Bioresour. Technol., 79, 207, 10.1016/S0960-8524(01)00074-8
Sauer, 2010, Mass spectrometry tools for the classification and identification of bacteria, Nat. Rev. Microbiol., 8, 74, 10.1038/nrmicro2243
Hay, 2009, Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain, Appl. Environ. Microbiol., 75, 6022, 10.1128/AEM.01078-09
Nivens, 2001, Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms, J. Bacteriol., 183, 1047, 10.1128/JB.183.3.1047-1057.2001
Hay, 2009, MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa, Appl. Environ. Microbiol., 75, 1110, 10.1128/AEM.02416-08
Ryder, 2007, Role of polysaccharides in Pseudomonas aeruginosa biofilm development, Curr. Opin. Microbiol., 10, 644, 10.1016/j.mib.2007.09.010
Poulsen, 1999, Microbial biofilm in food processing, LWT-Food Sci. Technol., 32, 321, 10.1006/fstl.1999.0561
Branda, 2005, Biofilms: the matrix revisited, Trends Microbiol., 13, 20, 10.1016/j.tim.2004.11.006
Stanley, 2005, Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation, Mol. Microbiol., 57, 1143, 10.1111/j.1365-2958.2005.04746.x
Branda, 2006, A major protein component of the Bacillus subtilis biofilm matrix, Mol. Microbiol., 59, 1229, 10.1111/j.1365-2958.2005.05020.x
Palmer, 2007, Bacterial cell attachment, the beginning of a biofilm, J. Ind. Microbiol. Biotechnol., 34, 577, 10.1007/s10295-007-0234-4
Hood, 1995, Biofilms in food processing, Food Control., 6, 9, 10.1016/0956-7135(95)91449-U
Marszalek, 2012, Stretching single polysaccharides and proteins using atomic force microscopy, Chem. Soc. Rev., 41, 3523, 10.1039/c2cs15329g
Ashiuchi, 2002, Biochemistry and molecular genetics of poly-γ-glutamate synthesis, Appl. Microbiol. Biotechnol., 59, 9, 10.1007/s00253-002-0984-x
Atrih, 1999, The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination, Antonie Van Leeuwenhoe, 75, 299, 10.1023/A:1001800507443
Rehm, 1997, Bacterial alginates: biosynthesis and applications, Appl. Microbiol. Biotechnol., 48, 281, 10.1007/s002530051051
Friedman, 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol., 51, 675, 10.1046/j.1365-2958.2003.03877.x
H.P.J, 1989, Effect of various agents upon the attachment of Pseudomonas fragi to stainless steel, J. Food Sci., 54, 461, 10.1111/j.1365-2621.1989.tb03106.x
Mai, 1993, Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase specific monoclonal antibodies, and antibiotics, Infect. Immun., 61, 4338, 10.1128/IAI.61.10.4338-4343.1993
Shi, 2009, Biofilm formation and food safety in food industries, Trends Food Sci. Technol., 20, 407, 10.1016/j.tifs.2009.01.054
Sutherland, 2001, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, 147, 3, 10.1099/00221287-147-1-3
Tielen, 2005, Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa, Microbiol. Res., 160, 165, 10.1016/j.micres.2004.11.003
Ma, 2006, Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment, J. Bacteriol, 188, 8213, 10.1128/JB.01202-06