Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion

Colloids and Surfaces B: Biointerfaces - Tập 146 - Trang 459-467 - 2016
Ardiyan Harimawan1, Yen-Peng Ting2
1Department of Chemical Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
2Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576 Singapore

Tài liệu tham khảo

Kunacheva, 2014, Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review, Water Res., 61, 1, 10.1016/j.watres.2014.04.044 Costerton, 1995, Microbial biofilms, Annu. Rev. Microbiol., 49, 711, 10.1146/annurev.mi.49.100195.003431 Perni, 2014, Success and failure of colloidal approaches in adhesion of microorganisms to surfaces, Adv. Colloid Interface Sci., 206, 265, 10.1016/j.cis.2013.11.008 Jian-Zhou, 2015, Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media, J. Hazard. Mater., 300, 467, 10.1016/j.jhazmat.2015.07.026 Peterson, 2015, Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges, FEMS Microbiol. Rev., 39, 234, 10.1093/femsre/fuu008 Ni, 2013, Formation processes of extracellular polymeric substances, 139 Basuvaraj, 2015, Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc, Water Res., 82, 104, 10.1016/j.watres.2015.05.014 Abu-Lail, 2003, Role of lipopolysaccharides in the adhesion retention, and transport of Escherichia coli JM109, Environ. Sci. Technol., 37, 2173, 10.1021/es026159o Hall-Stoodley, 2002, Developmental regulation of microbial biofilms, Curr. Opin. Biotechnol., 13, 228, 10.1016/S0958-1669(02)00318-X Liu, 2010, Contribution of extracellular polymeric substances (EPS) to the sludge aggregation, Environ. Sci. Technol., 44, 4355, 10.1021/es9016766 Hwang, 2012, Impact of an extracellular polymeric substance (EPS) precoating on the initial adhesion of Burkholderia cepacia and Pseudomonas aeruginosa, Biofouling, 28, 525, 10.1080/08927014.2012.694138 Barnes, 2014, The roles of Pseudomonas aeruginosa extracellular polysaccharides in biofouling of reverse osmosis membranes and nitric oxide induced dispersal, J. Memb. Sci., 466, 161, 10.1016/j.memsci.2014.04.046 Vu, 2009, Bacterial extracellular polysaccharides involved in biofilm formation, Molecules, 14, 2535, 10.3390/molecules14072535 Tuson, 2013, Bacteria-surface interactions, Soft Matter., 9, 4368, 10.1039/c3sm27705d Dufrêne, 2015, Sticky microbes: forces in microbial cell adhesion, Trends Microbiol., 23, 376, 10.1016/j.tim.2015.01.011 Fang, 2002, Effects of toxic metals and chemicals on biofilm and biocorrosion, Water Res., 36, 4709, 10.1016/S0043-1354(02)00207-5 Ahimou, 2007, Effect of protein polysaccharide, and oxygen concentration profiles on biofilm cohesiveness, Appl. Environ. Microbiol., 73, 2905, 10.1128/AEM.02420-06 Markwell, 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 87, 206, 10.1016/0003-2697(78)90586-9 Harimawan, 2011, Bacteria attachment to surfaces⿿AFM force spectroscopy and physicochemical analyses, J. Colloid Interface Sci., 364, 213, 10.1016/j.jcis.2011.08.021 Mann, 2012, Pseudomonas biofilm matrix composition and niche biology, FEMS Microbiol. Rev., 36, 893, 10.1111/j.1574-6976.2011.00322.x Bjarnsholt, 2013, The role of bacterial biofilms in chronic infections, APMIS, 121, 1, 10.1111/apm.12099 Fahs, 2014, In situ analysis of bacterial extracellular polymeric substances from a Pseudomonas fluorescens biofilm by combined vibrational and single molecule force spectroscopies, J. Phys. Chem. B., 118, 6702, 10.1021/jp5030872 Kim, 2000, Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides, Appl. Environ. Microbiol., 66, 976, 10.1128/AEM.66.3.976-981.2000 Knoshaug, 2000, Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352, J. Dairy Sci., 83, 633, 10.3168/jds.S0022-0302(00)74923-X Harapanahalli, 2015, Influence of adhesion force on icaA and cidA gene expression and production of matrix components in Staphylococcus aureus biofilms, Appl. Environ. Microbiol., 81, 3369, 10.1128/AEM.04178-14 Görner, 2003, Activated sludge exopolymers: separation and identification using size exclusion chromatography and infrared micro-spectroscopy, Water Res., 37, 2388, 10.1016/S0043-1354(02)00553-5 Verhoef, 2005, Sugar composition and FT⿿IR analysis of exopolysaccharides produced by microbial isolates from paper mill slime deposits, Biotechnol. Bioeng., 91, 91, 10.1002/bit.20494 Kodali, 2009, An exopolysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity, Food Res. Int., 42, 695, 10.1016/j.foodres.2009.02.007 Badireddy, 2010, Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions, Water Res., 44, 4505, 10.1016/j.watres.2010.06.024 Zhang, 2014, Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation, Chemosphere, 117, 59, 10.1016/j.chemosphere.2014.05.070 Song, 2016, Antimicrobials influence bond stiffness and detachment of oral bacteria, J. Dent. Res., 1 Leone, 2006, The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides, Carbohydr. Res., 341, 2456, 10.1016/j.carres.2006.06.011 Wozniak, 2003, Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms, Proc. Natl. Acad. Sci., 100, 7907, 10.1073/pnas.1231792100 Hay, 2013, Microbial alginate production, modification and its applications, Microb. Biotechnol., 6, 637, 10.1111/1751-7915.12076 Shih, 2001, The production of poly-(γ-glutamic acid) from microorganisms and its various applications, Bioresour. Technol., 79, 207, 10.1016/S0960-8524(01)00074-8 Sauer, 2010, Mass spectrometry tools for the classification and identification of bacteria, Nat. Rev. Microbiol., 8, 74, 10.1038/nrmicro2243 Hay, 2009, Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain, Appl. Environ. Microbiol., 75, 6022, 10.1128/AEM.01078-09 Nivens, 2001, Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms, J. Bacteriol., 183, 1047, 10.1128/JB.183.3.1047-1057.2001 Hay, 2009, MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa, Appl. Environ. Microbiol., 75, 1110, 10.1128/AEM.02416-08 Ryder, 2007, Role of polysaccharides in Pseudomonas aeruginosa biofilm development, Curr. Opin. Microbiol., 10, 644, 10.1016/j.mib.2007.09.010 Poulsen, 1999, Microbial biofilm in food processing, LWT-Food Sci. Technol., 32, 321, 10.1006/fstl.1999.0561 Branda, 2005, Biofilms: the matrix revisited, Trends Microbiol., 13, 20, 10.1016/j.tim.2004.11.006 Stanley, 2005, Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation, Mol. Microbiol., 57, 1143, 10.1111/j.1365-2958.2005.04746.x Branda, 2006, A major protein component of the Bacillus subtilis biofilm matrix, Mol. Microbiol., 59, 1229, 10.1111/j.1365-2958.2005.05020.x Palmer, 2007, Bacterial cell attachment, the beginning of a biofilm, J. Ind. Microbiol. Biotechnol., 34, 577, 10.1007/s10295-007-0234-4 Hood, 1995, Biofilms in food processing, Food Control., 6, 9, 10.1016/0956-7135(95)91449-U Marszalek, 2012, Stretching single polysaccharides and proteins using atomic force microscopy, Chem. Soc. Rev., 41, 3523, 10.1039/c2cs15329g Ashiuchi, 2002, Biochemistry and molecular genetics of poly-γ-glutamate synthesis, Appl. Microbiol. Biotechnol., 59, 9, 10.1007/s00253-002-0984-x Atrih, 1999, The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination, Antonie Van Leeuwenhoe, 75, 299, 10.1023/A:1001800507443 Rehm, 1997, Bacterial alginates: biosynthesis and applications, Appl. Microbiol. Biotechnol., 48, 281, 10.1007/s002530051051 Friedman, 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol., 51, 675, 10.1046/j.1365-2958.2003.03877.x H.P.J, 1989, Effect of various agents upon the attachment of Pseudomonas fragi to stainless steel, J. Food Sci., 54, 461, 10.1111/j.1365-2621.1989.tb03106.x Mai, 1993, Inhibition of adherence of mucoid Pseudomonas aeruginosa by alginase specific monoclonal antibodies, and antibiotics, Infect. Immun., 61, 4338, 10.1128/IAI.61.10.4338-4343.1993 Shi, 2009, Biofilm formation and food safety in food industries, Trends Food Sci. Technol., 20, 407, 10.1016/j.tifs.2009.01.054 Sutherland, 2001, Biofilm exopolysaccharides: a strong and sticky framework, Microbiology, 147, 3, 10.1099/00221287-147-1-3 Tielen, 2005, Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa, Microbiol. Res., 160, 165, 10.1016/j.micres.2004.11.003 Ma, 2006, Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment, J. Bacteriol, 188, 8213, 10.1128/JB.01202-06