Abnormal enhancement to the quality factors of carbon nanotube via defects engineering

Nano Materials Science - Tập 4 - Trang 259-265 - 2022
Ke Duan1, Li Li1, Sihan Liu1, Yujin Hu1, Xuelin Wang1
1State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Tài liệu tham khảo

Jensen, 2008, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 3, 533, 10.1038/nnano.2008.200 Chaste, 2012, A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol., 7, 301, 10.1038/nnano.2012.42 Eom, 2011, Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles, Phys. Rep., 503, 115, 10.1016/j.physrep.2011.03.002 Besley, 2020, Vibrational analysis of carbon nanotube based nanomechanical resonators, J. Phys. Chem. C, 124, 16714, 10.1021/acs.jpcc.0c04998 Banerjee, 2018, Ultralarge elastic deformation of nanoscale diamond, Science, 360, 300, 10.1126/science.aar4165 Zhan, 2012, Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements, Nanoscale, 4, 6779, 10.1039/c2nr31545a Tsaturyan, 2017, Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nat. Nanotechnol., 12, 776, 10.1038/nnano.2017.101 Rossi, 2018, Measurement-based quantum control of mechanical motion, Nature, 563, 53, 10.1038/s41586-018-0643-8 Ghadimi, 2018, Elastic strain engineering for ultralow mechanical dissipation, Science, 360, 764, 10.1126/science.aar6939 Fedorov, 2019, Generalized dissipation dilution in strained mechanical resonators, Phys. Rev. B, 99, 10.1103/PhysRevB.99.054107 Romero, 2020, Engineering the dissipation of crystalline micromechanical resonators, Physical Review Applied, 13, 10.1103/PhysRevApplied.13.044007 Jiang, 2004, Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator, Phys. Rev. Lett., 93, 185501, 10.1103/PhysRevLett.93.185501 Peng, 2006, Ultrahigh frequency nanotube resonators, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.087203 Imboden, 2014, Dissipation in nanoelectromechanical systems, Phys. Rep., 534, 89, 10.1016/j.physrep.2013.09.003 Guo, 2018, An intrinsic energy conversion mechanism via telescopic extension and retraction of concentric carbon nanotubes, Nanoscale, 10, 4897, 10.1039/C7NR07971K Duan, 2018, Diamond nanothread based resonators: ultrahigh sensitivity and low dissipation, Nanoscale, 10, 8058, 10.1039/C8NR00502H Schroeder, 2018, Carbon nanotube chemical sensors, Chem. Rev., 119, 599, 10.1021/acs.chemrev.8b00340 Yomogida, 2016, Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging, Nat. Commun., 7, 1, 10.1038/ncomms12056 Lifshitz, 2000, Thermoelastic damping in micro-and nanomechanical systems, Phys. Rev. B, 61, 5600, 10.1103/PhysRevB.61.5600 Ho, 2020, The effect of single vacancy defects on graphene nanoresonators, Multiscale Science and Engineering, 1, 10.1007/s42493-020-00030-9 Qi, 2012, Intrinsic energy dissipation in cvd-grown graphene nanoresonators, Nanoscale, 4, 3460, 10.1039/c2nr30493g Zhang, 2016, Reversible tuning of individual carbon nanotube mechanical properties via defect engineering, Nano Lett., 16, 5221, 10.1021/acs.nanolett.6b02287 Li, 2018, Structural and electrical properties tailoring of carbon nanotubes via a reversible defect handling technique, Carbon, 133, 186, 10.1016/j.carbon.2018.03.029 Chen, 2018, An activity recoverable carbon nanotube based electrocatalysts: rapid annealing effects and importance of defects, Carbon, 129, 119, 10.1016/j.carbon.2017.12.010 Stukowski, 2009, Visualization and analysis of atomistic simulation data with ovito–the open visualization tool, Model. Simulat. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012 Duan, 2018, High intrinsic dissipation of graphyne nanotubes, EPL (Europhysics Letters), 122, 46001, 10.1209/0295-5075/122/46001 Vallabhaneni, 2011, Observation of nonclassical scaling laws in the quality factors of cantilevered carbon nanotube resonators, J. Appl. Phys., 110, 10.1063/1.3611396 Vallabhaneni, 2012, A band-pass filter approach within molecular dynamics for the prediction of intrinsic quality factors of nanoresonators, J. Appl. Phys., 112, 10.1063/1.4754450 Nie, 2019, How gaseous environment influences a carbon nanotube-based mechanical resonator, J. Phys. Chem. C, 123, 25925, 10.1021/acs.jpcc.9b06221 Kim, 2009, The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators, Nano Lett., 9, 969, 10.1021/nl802853e