Abnormal enhancement to the quality factors of carbon nanotube via defects engineering
Tài liệu tham khảo
Jensen, 2008, An atomic-resolution nanomechanical mass sensor, Nat. Nanotechnol., 3, 533, 10.1038/nnano.2008.200
Chaste, 2012, A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol., 7, 301, 10.1038/nnano.2012.42
Eom, 2011, Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles, Phys. Rep., 503, 115, 10.1016/j.physrep.2011.03.002
Besley, 2020, Vibrational analysis of carbon nanotube based nanomechanical resonators, J. Phys. Chem. C, 124, 16714, 10.1021/acs.jpcc.0c04998
Banerjee, 2018, Ultralarge elastic deformation of nanoscale diamond, Science, 360, 300, 10.1126/science.aar4165
Zhan, 2012, Beat phenomena in metal nanowires, and their implications for resonance-based elastic property measurements, Nanoscale, 4, 6779, 10.1039/c2nr31545a
Tsaturyan, 2017, Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nat. Nanotechnol., 12, 776, 10.1038/nnano.2017.101
Rossi, 2018, Measurement-based quantum control of mechanical motion, Nature, 563, 53, 10.1038/s41586-018-0643-8
Ghadimi, 2018, Elastic strain engineering for ultralow mechanical dissipation, Science, 360, 764, 10.1126/science.aar6939
Fedorov, 2019, Generalized dissipation dilution in strained mechanical resonators, Phys. Rev. B, 99, 10.1103/PhysRevB.99.054107
Romero, 2020, Engineering the dissipation of crystalline micromechanical resonators, Physical Review Applied, 13, 10.1103/PhysRevApplied.13.044007
Jiang, 2004, Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator, Phys. Rev. Lett., 93, 185501, 10.1103/PhysRevLett.93.185501
Peng, 2006, Ultrahigh frequency nanotube resonators, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.087203
Imboden, 2014, Dissipation in nanoelectromechanical systems, Phys. Rep., 534, 89, 10.1016/j.physrep.2013.09.003
Guo, 2018, An intrinsic energy conversion mechanism via telescopic extension and retraction of concentric carbon nanotubes, Nanoscale, 10, 4897, 10.1039/C7NR07971K
Duan, 2018, Diamond nanothread based resonators: ultrahigh sensitivity and low dissipation, Nanoscale, 10, 8058, 10.1039/C8NR00502H
Schroeder, 2018, Carbon nanotube chemical sensors, Chem. Rev., 119, 599, 10.1021/acs.chemrev.8b00340
Yomogida, 2016, Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging, Nat. Commun., 7, 1, 10.1038/ncomms12056
Lifshitz, 2000, Thermoelastic damping in micro-and nanomechanical systems, Phys. Rev. B, 61, 5600, 10.1103/PhysRevB.61.5600
Ho, 2020, The effect of single vacancy defects on graphene nanoresonators, Multiscale Science and Engineering, 1, 10.1007/s42493-020-00030-9
Qi, 2012, Intrinsic energy dissipation in cvd-grown graphene nanoresonators, Nanoscale, 4, 3460, 10.1039/c2nr30493g
Zhang, 2016, Reversible tuning of individual carbon nanotube mechanical properties via defect engineering, Nano Lett., 16, 5221, 10.1021/acs.nanolett.6b02287
Li, 2018, Structural and electrical properties tailoring of carbon nanotubes via a reversible defect handling technique, Carbon, 133, 186, 10.1016/j.carbon.2018.03.029
Chen, 2018, An activity recoverable carbon nanotube based electrocatalysts: rapid annealing effects and importance of defects, Carbon, 129, 119, 10.1016/j.carbon.2017.12.010
Stukowski, 2009, Visualization and analysis of atomistic simulation data with ovito–the open visualization tool, Model. Simulat. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012
Duan, 2018, High intrinsic dissipation of graphyne nanotubes, EPL (Europhysics Letters), 122, 46001, 10.1209/0295-5075/122/46001
Vallabhaneni, 2011, Observation of nonclassical scaling laws in the quality factors of cantilevered carbon nanotube resonators, J. Appl. Phys., 110, 10.1063/1.3611396
Vallabhaneni, 2012, A band-pass filter approach within molecular dynamics for the prediction of intrinsic quality factors of nanoresonators, J. Appl. Phys., 112, 10.1063/1.4754450
Nie, 2019, How gaseous environment influences a carbon nanotube-based mechanical resonator, J. Phys. Chem. C, 123, 25925, 10.1021/acs.jpcc.9b06221
Kim, 2009, The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators, Nano Lett., 9, 969, 10.1021/nl802853e