Inhalable particulate (PM10) emission externalities from overburden dumps and associated health risk assessment in densely populated coalfield

Springer Science and Business Media LLC - Tập 36 - Trang 1631-1649 - 2021
Amartanshu Srivastava1, Ambasht Kumar1, Kumar Vaibhav2, Suresh Pandian Elumalai1
1Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
2Central Mine Planning and Design Institute(CMPDIL), Regional Institute-II, Dhanbad, India

Tóm tắt

Overburden (OB) dumps and associated haulage are the significant contributors to increased respirable particulate levels in mining areas. Earlier studies have only focused on reporting seasonal variation of size-segregated particle mass concentration, limiting the role of specific emission sources on sensitive receptors nearby. This study estimated the impact of OB dump expansion (between years 2016 and 2018) with associated haulage on spatial pattern of particulate concentration, associated health effects, and health cost. Furthermore, a model to identify critical health risk zones was also developed. Haulage of OB and its unloading contributed to a significant increase in particulate concentration on the windward side. Moreover, OB dumping resulted in a higher respiratory dose for workers and inhabitants nearby the OB dumpsite. The results indicated that coughing along with lower respiratory problems were the dominant health effects. Moreover, the cases of lower respiratory symptoms due to PM10 emissions from OB dumps increased in 2018. The risk potential model indicated a 4.9% increase in high risk category for the population exposed to PM10 emission from OB expansion within two years. An alternative management option was proposed to reduce health risk potential. The control resulted in 73% peak concentration curtailment and 84% reduction in the surface area exceeding prescribed PM10 (100 µg/m3) levels. The said study will be useful in demarcating risk zones and findings have particular significance for dispersion of particulates emanating from OB dumps.

Tài liệu tham khảo

Abril GA, Diez SC, Pignata ML, Britch J (2016) Particulate matter concentrations originating from industrial and urban sources: validation of atmospheric dispersion modeling results. Atmos Pollut Res 7:180–189 Al Smadi BM, Al-Zboon KK, Shatnawi KM (2009) Assessment of air pollutants emissions from a cement plant: a case study in Jordan. Jordan J Civ Eng 3:265–282 Aliyu AS, Ramli AT, Saleh MA (2014) Environmental impact assessment of a new nuclear power plant (NPP) based on atmospheric dispersion modeling. Stoch Environ Res Risk Assess 1897–911 Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM 2.5. Environ Sci Technol 49:8057–8066. https://doi.org/10.1021/acs.est.5b01236 Bishwal RM, Sen P, Jawed M (2019) Future challenges of overburden waste management in Indian coal mines. In: Waste management and resource efficiency. Springer, Singapore, pp1003–1011 Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242 Chakraborty MK, Ahmad M, Singh RS, Pal D, Bandopadhyay C, Chaulya SK (2002) Determination of the emission rate from various opencast mining operations. Environm Model Softw 17:467–480 Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteor Atmos Phys 87:167–196 Chate DM (2011) Below-thunderstorm rain scavenging of urban aerosols in the health hazardous modes. Nat Hazards 56:81–91 Chaulya SK (2006) Emission rate formulae for surface iron ore mining activities. Environ Model Assess 11:361–370 Cohen JE (1995) Population growth and earth’s human carrying capacity. Science 269:341–346 Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y (2006) Adverse health effects of outdoor air pollutants. Environm Int 32:815–830 Davies TC, Mundalamo HR (2010) Environmental health impacts of dispersed mineralisation in South Africa. J Afr Earth Sci 58:652–666 Dong X, Zhao X, Peng F, Wang D (2020) Population based air pollution exposure and its influence factors by integrating air dispersion modeling with GIS spatial analysis. Sci Rep 10:1–12 Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107 Finkelman RB (2004) Potential health impacts of burning coal beds and waste banks. Int J Coal Geol 59:19–24 Finkelman RB, Orem W, Castranova V et al (2002) Health impacts of coal and coal use: possible solutions. Int J Coal Geol 50:425–443 Foster A, Kumar N (2011) Health effects of air quality regulations in Delhi, India. Atmos Environ 45:1675–1683 Fuentes M, Millard K, Laurin E (2020) Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas. GIScience Remote Sens 57:245–257 Funk R, Papke N, Hör B (2019) Wind tunnel tests to estimate PM10 and PM2. 5-emissions from complex substrates of open-cast strip mines in Germany. Aeolian Res 39:23–32 Ghose MK (2007) Generation and quantification of hazardous dusts from coal mining in the Indian context. Environ Monit Assess 130:35–45 Ghosh MK, Majee SR (2007) Characteristics of hazardous Airborn dust around an Indian Coal mining Area. Environ Monit Assess 130:17–25 Guttikunda SK, Jawahar P (2014) Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos Environ 92:449–460 Guttikunda SK, Goel R, Pant P (2014) Nature of air pollution, emission sources, and management in the Indian cities. Atmos Environ 95:501–510 Hanna SR, Chang J (2010) Setting acceptance criteria for air quality models. In: Proceedings of the international technical meeting on air pollution modelling and its application. Turin, Italy Hanna SR, Chang J (2011) Setting acceptance criteria for air quality models. Air Pollution Modeling and its Application XXI. Springer, Dordrecht, pp 479–484 Hendryx M (2009) Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. Int Arch Occup Environ Health 82:243–249 Huertas JI, Huertas ME, Izquierdo S, González ED (2012) Air quality impact assessment of multiple open pit coal mines in northern Colombia. J Environ Manage 93:121–129 Kakosimos KE, Assael MJ, Lioumbas JS, Spiridis AS (2011) Atmospheric dispersion modelling of the fugitive particulate matter from overburden dumps with numerical and integral models. Atmos Pollut Res 2:24–33 Karan SK, Samadder SR, Maiti SK (2016) Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands. J Environ Manage 182:272–283 Khan J, Ketzel M, Kakosimos K, Sørensen M, Jensen SS (2018) Road traffic air and noise pollution exposure assessment–A review of tools and techniques. Sci Total Environ 634:661–676 Koner R, Chakravarty D (2016) Characterisation of overburden dump materials: a case study from the Wardha valley coal field. B Eng Geol Environ 75:1311–1323 Kumari S, Maiti SK (2019) Reclamation of coalmine spoils with topsoil, grass, and legume: a case study from India. Environ Earth Sci 78:1–14 Landis MS, Pancras JP, Graney JR, Stevens RK, Percy KE, Krupa S (2012) Receptor modeling of epiphytic lichens to elucidate the sources and spatial distribution of inorganic air pollution in the Athabasca Oil Sands Region. In: Developments in Environmental Science, Vol 11. Elsevier, pp 427–467 Liu JG, Mason P (2013) Essential image processing and GIS for remote sensing. John Wiley & Sons, Wiley Maji KJ, Dikshit AK, Deshpande A (2017) Disability-adjusted life years and economic cost assessment of the health effects related to PM 2.5 and PM 10 pollution in Mumbai and Delhi, in India from 1991 to 2015. Environ Sci Pollut Res 24:4709–4730 Mallet MD (2021) Meteorological normalisation of PM10 using machine learning reveals distinct increases of nearby source emissions in the Australian mining town of Moranbah. Atmos Pollut Res 12:23–35 Maynard R (2004) Key airborne pollutants—the impact on health. Sci Total Environ 334–335:9–13 Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663–16682 MoEFCC (2000) Jharia coal field air quality standards for coal mines, 2000. A. In: Mendment Rules, 2000 of MoEF Govt, vol. 742. of India notified vide notification G. S.R. Morakinyo OM, Adebowale AS, Mokgobu MI, Mukhola MS (2017) Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study. BMJ open 7:e013941 Onder M, Yigit E (2009) Assessment of respirable dust exposures in an opencast coal mine. Environ Monit Assess 152:393–401 Pandian S, Gokhale S, Ghoshal AK (2011) An open-terrain line source model coupled with street-canyon effects to forecast carbon monoxide at traffic roundabout. Sci Total Environ 409:1145–1153 Patra AK, Gautam S, Kumar P (2016) Emissions and human health impact of particulate matter from surface mining operation—A review. Environ Technol Inno 5:233–249 Pless-Mulloli T, Howel D, Prince H (2001) Prevalence of asthma and other respiratory symptoms in children living near and away from opencast coal mining sites. Int J Epidemiol 30:556–563 Rai SS, Murthy VM, Sukesh N, Sairam Teja A, Raval S (2020) Operational efficiency of equipment system drives environmental and economic performance of surface coal mining—A sustainable development approach. Sustain Dev 29:25–54 Richards JA, Jia X (2006) Interpretation of hyperspectral image data. Remote Sensing Digital Image Analysis: An Introduction, pp 359–388 Richardson RR, Osborne MA, Howey DA (2019) Battery health prediction under generalized conditions using a Gaussian process transition model. J Energy Storage 23:320–328 Srivastava A, Elumalai SP (2021) Assessment of emission-source contribution to spatial dispersion for coal crusher agglomeration using prognostic model. Clean Eng Technol 3:100113. https://doi.org/10.1016/j.clet.2021.100113 Srivastava A, Kumar A, Elumalai SP (2021) Evaluating Dispersion modeling of inhalable particulates (PM 10) emissions in complex terrain of coal mines. Environ Model Assess 26:385–403 Tartakovsky D, Broday DM, Stern E (2013) Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut 179:138–145 Tartakovsky D, Stern E, Broday DM (2016) Dispersion of TSP and PM10 emissions from quarries in complex terrain. Sci Total Environ 542:946–954 Theobald MR, Sanz-Cobena A, Vallejo A, Sutton MA (2015) Suitability and uncertainty of two models for the simulation of ammonia dispersion from a pig farm located in an area with frequent calm conditions. Atmos Environ 102:167–175 Tomlin AS, Smalley RJ, Tate JE et al (2009) A field study of factors influencing the concentrations of a traffic-related pollutant in the vicinity of a complex urban junction. Atmos Environ 43:5027–5037 Trivedi R, Chakraborty MK, Tewary BK (2009) Dust dispersion modeling using fugitive dust model at an opencast coal project of Western Coalfields Limited, India. J Sci Ind Res 68:71–78 van der Kamp J, Bachmann TM (2015) Health-related external cost assessment in Europe: methodological developments from ExternE to the 2013 clean air policy package. Environ Sci Technol 49:2929–2938 WHO (World Health Organisation) (2000a) Air Quality Guidelines for Europe, second edition. WHO Regional Publications, European Series, No. 91. http://www.euro.who.int/eprise/main/who/InformationSources/Publications/Catalogue/20010910_6. Accessed 2 December 2018 WHO (World Health Organisation) (2000b) Air Quality Guidelines for Europe, second ed. WHO Regional Publications, European Series, No. 91. WHO Regional Office for Europe, Copenhagen (Chapter 7.4) WHO (World Health Organisation) (2000c) Health-based guidelines. In: Guidelines for Air Quality. Available: http://www.elaw.org/assets/pdf/aqguide3.pdf. Accessed 4 May 2020 Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094 World Energy Outlook. (2015). World Energy Outlook Special Report. http://www.worldenergyoutlook.org/media/weowebsite/2015/IndiaEnergyOutlook_WEO2015.pdf World Health Organization (1999) Principles for the assessment of risks to human health from exposure to chemicals. Environmental Health Criteria 210. Geneva, Switzerland, WHO (World Health Organisation) (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global update, 2005, WHO/SDE/PHE/OEH/06.02 Zeng H, Talkkari A, Peltola H, Kellomäki S (2007) A GIS-based decision support system for risk assessment of wind damage in forest management. Environ Model Softw 22:1240–1249 Zhang J, Jorgensen S (2005) Modelling of point and non-point nutrient loadings from a watershed. Environ Model Softw 20:561–574 Zhang N, Zhuang M, Tian J, Tian P, Zhang J, Wang Q, Zhou Y, Huang R, Zhu C, Zhang X, Cao J (2016) Development of source profiles and their application in source apportionment of PM 2.5 in Xiamen. China. Front Environ Sci Eng 10:1–3