Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arana LR, Schaevitz SB, Franz AJ, Schmidt MA, Jensen KF (2003) A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing. J Microelectromech Syst 12:600–612. doi: 10.1109/JMEMS.2003.817897
Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles, 1st edn. Willey, New York
Brust B, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802. doi: 10.1039/c39940000801
Chan EM, Mathies RA, Alivisatos AP (2003) Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3:199–201. doi: 10.1021/nl0259481
Dawn A, Nandi AK (2006) Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: a novel nano-biocomposite. J Phys Chem B 110:18291–18298. doi: 10.1021/jp063269z
Enders D, Nagao T, Nakayama T, Aono M (2007) In situ surface-enhanced infrared absorption spectroscopy for the analysis of the adsorption and desorption process of Au nanoparticles on the SiO2/Si surface. Langmuir 23:6119–6125. doi: 10.1021/la063239n
Guerrini L, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2006) Functionalization of Ag nanoparticles with dithiocarbamate calix[4]arene as an effective supramolecular host for the surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Langmuir 22:10924–10926. doi: 10.1021/la062266a
He ST, Xie SS, Yao JN, Gao HJ, Pang SJ (2002) Self-assembled two-dimensional superlattice of Au–Ag alloy nanocrystals. Appl Phys Lett 81:150–152. doi: 10.1063/1.1489722
He ST, Kohira T, Uehara M, Kitamura T, Nakamura H, Miyazaki M et al (2005) Effects of interior wall on continuous fabrication of silver nanoparticles in microcapillary reactor. Chem Lett 34:748–749. doi: 10.1246/cl.2005.748
He ST, Liu YL, Uehara M, Maeda H (2007) Continuous micro flow synthesis of ZnO nanorods with UV emissions. Mater Sci Eng B 137:295–298. doi: 10.1016/j.mseb.2006.10.012
Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511. doi: 10.1021/cm049532v
Holm AH, Ceccoto M, Donkers RL, Fabris L, Pace G, Maran F (2006) Effect of peptide ligand dipole moments on the redox potentials of Au38 and Au140 nanoparticles. Langmuir 22:10584–10589. doi: 10.1021/la061553b
Jahnisch K, Hessel V, Lowe H, Baerns M (2004) Chemistry in microstructured reactors. Angew Chem Int Ed Engl 43:406–446. doi: 10.1002/anie.200300577
Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T et al (2004) A microfluidic device for conducting gas–liquid–solid hydrogenation reactions. Science 304:1305–1308. doi: 10.1126/science.1096956
Kumar GVP, Shruthi S, Vibha B, Ashok Reddy BA, Kundu TK, Narayana C (2007) Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392. doi: 10.1021/jp068253n
Lin X, Alexander AD, Yang H (2004) Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett 4:2227–2232. doi: 10.1021/nl0485859
Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Muivaney P (2002) Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem Commun (Camb) 15:2844–2845. doi: 10.1039/b208992k
Plieni MP, Taleb A, Petit C (1998) Silver metal nanosized particles: control of particle size, self assemblies in 2D and 3D superlattices and optical propeties. J Dispers Sci Technol 19:185–206. doi: 10.1080/01932699808913171
Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB et al (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air–water interface. Langmuir 20:7825–7836. doi: 10.1021/la049258j
Seong GH, Crools RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124:13360–13361. doi: 10.1021/ja020932y
Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321. doi: 10.1039/b403378g
Shibata T, Bunker BA, Zhang Z (2002) Size-dependent spontaneous alloying of Au–Ag nanoparticles. J Am Chem Soc 124:11989–11996. doi: 10.1021/ja026764r
Takayama S, Ostuni E, LeDuc P, Naruse Keiji , Ingber DE, Whitesides GM (2001) Laminar flows: subcellular positioning of small molecules. Nature 411:1016. doi: 10.1038/35082637
Wang HZ, Nakamura H, Uehara M, Miyazaki M, Maeda H (2002) Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem Commun (Camb) 15:1462–1463. doi: 10.1039/b203478f
Wang J, Ibanez A, Chatrathi MP (2003) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J Am Chem Soc 125:8444–8445. doi: 10.1021/ja036067e
Wang HZ, Li XY, Uehara M, Yamaguchi Y, Nakamura H, Miyazaki M et al (2004) Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chem Commun (Camb) 17:48–49. doi: 10.1039/b310644f
Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076. doi: 10.1021/ar7000974
Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699. doi: 10.1021/ja073057v
Yen BK, Stott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15:1858–1862. doi: 10.1002/adma.200305162
