Upregulation of peripheral CD4+CXCR5+ T cells in osteosarcoma

Tumor Biology - Tập 35 - Trang 5273-5279 - 2014
Hong Xiao1,2, Gang Luo1, Haihang Son3, Yue Zhou1, Wenjie Zheng1
1Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
2Department of Orthopedics, 324th Hospital of the People’s Liberation Army, Chongqing, China
3St Michael's Hospital, Toronto, Canada

Tóm tắt

Immune dysregulation plays a key role in the development of osteosarcoma (OS). Peripheral blood CD4+CXCR5+ T cells can induce B-cell activation and produce various cytokines and therefore may play critical roles in tumorigenesis. The purpose of the study was to investigate changes of peripheral CD4+CXCR5+ T cells in OS. Peripheral CD4+CXCR5+ T cells and its subtypes were determined by measuring CD3, CD4, CXCR5, CXCR3, and CCR6 in 38 OS patients and 42 healthy controls using flow cytometry. Data demonstrated that percentage of peripheral CD4+CXCR5+ T cells was significantly increased in OS patients (13.9 %) than in controls (8.6 %, p < 0.001). Further analysis identified a profound skewing of peripheral CD4+CXCR5+ T cell subsets toward Th2 and Th17 cells in OS patients. Investigating clinical status of the patients showed that prevalence of peripheral CD4+CXCR5+ T cells was significantly elevated in cases with metastasis (17.4 %) than those without metastasis (12.7 %). Similarly, patients with high tumor grade revealed increased percentage of CD4+CXCR5+ T cells compared to those with low tumor grade (15.3 versus 11.0 %). Interestingly, the upregulation of peripheral CD4+CXCR5+ T cells in patients with metastasis or high tumor grade was contributed by Th1 and Th17 subtypes. This study suggests the involvement of peripheral CD4+CXCR5+ T cells in the pathogenesis and progression of OS and provides novel knowledge for understanding this disease.

Tài liệu tham khảo

Schwab JH, Springfield DS, Raskin KA, Mankin HJ, Hornicek FJ. What’s new in primary bone tumors. J Bone Joint Surg Am. 2012;94:1913–9. Szuhai K, Cleton-Jansen AM, Hogendoorn PC, Bovée JV. Molecular pathology and its diagnostic use in bone tumors. Cancer Genet. 2012;205:193–204. Arndt CA, Rose PS, Folpe AL, Laack NN. Common musculoskeletal tumors of childhood and adolescence. Mayo Clin Proc. 2012;87:475–87. Crotty S. Follicular helper CD4 T cells (T(FH)). Annu Rev Immunol. 2011;29:621–63. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006–10. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, et al. Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12. Immunol Cell Biol. 2009;87:590–600. Kissin MW, Querci della Rovere G, Easton D, Westbury G. Risk of lymphoedema following treatment of breast cancer. Br J Surg. 1986;73:580–4. Giuliano AE, Dale PS, Turner RR, Morton DL, Evans SW, Krasne DL. Improved axillary staging of breast cancer with sentinel lymphadenectomy. Ann Surg. 1995;222:394–9. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, et al. Sentinel-node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph-nodes. Lancet. 1997;349:1864–7. You Z, Ouyang H, Lopatin D, Polver PJ, Wang CY. Nuclear factor-kappa B-inducible death effector domain-containing protein suppresses tumor necrosis factor-mediated apoptosis by inhibiting caspase-8 activity. J Biol Chem. 2001;276:26398–404. Zhang HG, Hyde K, Page GP, Brand JP, Zhou J, Yu S, et al. Novel tumor necrosis factor alpha-regulated genes in rheumatoid arthritis. Arthritis Rheum. 2004;50:420–31. Zhang C, Chakravarty D, Sakabe I, Mewani RR, Boudreau HE, Kumar D, et al. Role of SCC-S2 in experimental metastasis and modulation of VEGFR-2, MMP-1, and MMP-9 expression. Mol Ther. 2006;13:947–55. Laliberte B, Wilson AM, Nafisi H, Mao H, Zhou YY, Daigle M, et al. TNFAIP8: a new effector for Galpha(i) coupling to reduce cell death and induce cell transformation. J Cell Physiol. 2010;225:865–74. Inoue T, Hagiyama M, Enoki E, Sakurai MA, Tan A, Wakayama T, et al. Cell adhesion molecule 1 is a new osteoblastic cell adhesion molecule and a diagnostic marker for osteosarcoma. Life Sci. 2013;92:91–9. Shatz M, Menendez D, Resnick MA. The human TLR innate immune gene family is differentially influenced by DNA stress and p53 status in cancer cells. Cancer Res. 2012;72:3948–57. Baumhoer D, Smida J, Zillmer S, Rosemann M, Atkinson MJ, Nelson PJ, et al. Strong expression of CXCL12 is associated with a favorable outcome in osteosarcoma. Mod Pathol. 2012;25:522–8. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123:2873–92. Lim HW, Kim CH. Loss of IL-7 receptor alpha on CD4+ T cells defines terminally differentiated B cell-helping effector T cells in a B cell-rich lymphoid tissue. J Immunol. 2007;179:7448–56. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109:693–702. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3(+) follicular regulatory T cells control the germinal center response. Nat Med. 2011;17:975–82. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17:983–8. Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115:5053–6. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, et al. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 2013;34:3579–85. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013;39:770–81.