Semaphorins and tumor angiogenesis

Angiogenesis - Tập 12 - Trang 187-193 - 2009
Guido Serini1,2, Federica Maione1,2, Federico Bussolino1,2
1Institute for Cancer Research and Treatment, Torino, Italy
2Department of Oncological Sciences, University of Torino, Torino, Italy

Tóm tắt

Semaphorins belong to a large family of proteins well-conserved along evolution from viruses to mammalians. Secreted and membrane-bound semaphorins participate in a wide range of biological phenomena including development and regeneration of nervous system, cardiovascular development, and immune system activities. Different classes of semaphorins are bifunctional and often exert opposite effects (i.e., repellent or attractive) by acting through the plexin receptor family. However, some classes use other membrane receptors and the same plexin-mediated signals may be modulated by co-receptors, in particular neuropilins or some tyrosine kinase receptors. In cancer, semaphorins have both tumor-suppressor and tumor-promoting functions, by acting on both tumor and stromal components. Here, we review the role of semaphorins in tumor angiogenesis and propose that an unbalance between autocrine loops respectively involving angiogenic inducers and class 3 semaphorin is instrumental for structural and functional abnormalities observed in tumor vasculature.

Tài liệu tham khảo

Tran TS et al (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292. doi:10.1146/annurev.cellbio.22.010605.093554 Bussolino F et al (2006) Semaphoring vascular morphogenesis. Endothelium 13:81–91. doi:10.1080/10623320600698003 Gitler AD et al (2004) PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 7:107–116. doi:10.1016/j.devcel.2004.06.002 Zhang Y et al (2009) Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects. Dev Biol 325:82–93. doi:10.1016/j.ydbio.2008.09.031 Neufeld G, Kessler O (2008) The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat Rev Cancer 8:632–645. doi:10.1038/nrc2404 Zhou Y et al (2008) Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci 33:161–170. doi:10.1016/j.tibs.2008.01.006 Luo BH, Springer TA (2006) Integrin structures and conformational signaling. Curr Opin Cell Biol 18:579–586. doi:10.1016/j.ceb.2006.08.005 Valdembri D et al. (2009) Neuropilin-1/GIPC1 signaling regulates α5β1 integrin traffic and function in endothelial cells. PLoS Biol 7(1):e1000025. doi:10.1371/journal.pbio.1000025 Barberis D et al (2004) Plexin signaling hampers integrin-based adhesion, leading to Rho-kinase independent cell rounding, and inhibiting lamellipodia extension and cell motility. FASEB J 18:592–594 Butler B et al (2006) Purified integrin adhesion complexes exhibit actin-polymerization activity. Curr Biol 16:242–251. doi:10.1016/j.cub.2005.12.033 Takahashi T, Strittmatter SM (2001) Plexina1 autoinhibition by the plexin sema domain. Neuron 29:429–439. doi:10.1016/S0896-6273(01)00216-1 Oinuma I et al (2004) The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305:862–865. doi:10.1126/science.1097545 Negishi M et al (2005) R-ras as a key player for signaling pathway of plexins. Mol Neurobiol 32:217–222. doi:10.1385/MN:32:3:217 Oinuma I et al (2004) Molecular dissection of the semaphorin 4D receptor plexin-B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J Neurosci 24:11473–11480. doi:10.1523/JNEUROSCI.3257-04.2004 Kinbara K et al (2003) Ras GTPases: integrins’ friends or foes? Nat Rev Mol Cell Biol 4:767–776 Toyofuku T et al (2005) FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat Neurosci 8:1712–1719. doi:10.1038/nn1596 Critchley DR, Gingras AR (2008) Talin at a glance. J Cell Sci 121:1345–1347. doi:10.1242/jcs.018085 Conrotto P et al (2005) Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 105:4321–4329. doi:10.1182/blood-2004-07-2885 Basile JR et al (2004) Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64:5212–5224. doi:10.1158/0008-5472.CAN-04-0126 Basile JR et al (2005) Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol 25:6889–6898. doi:10.1128/MCB.25.16.6889-6898.2005 Swiercz JM et al (2004) Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2. J Cell Biol 165:869–880. doi:10.1083/jcb.200312094 Swiercz JM et al (2008) ERBB-2 and met reciprocally regulate cellular signaling via plexin-B1. J Biol Chem 283:1893–1901. doi:10.1074/jbc.M706822200 Toyofuku T et al (2007) Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J 26:1373–1384. doi:10.1038/sj.emboj.7601589 Soker S et al (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745. doi:10.1016/S0092-8674(00)81402-6 Kawasaki T et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902 Favier B et al (2006) Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108:1243–1250. doi:10.1182/blood-2005-11-4447 Karpanen T et al (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20:1462–1472. doi:10.1096/fj.05-5646com Matsushita A et al (2007) Hepatocyte growth factor-mediated cell invasion in pancreatic cancer cells is dependent on neuropilin-1. Cancer Res 67:10309–10316. doi:10.1158/0008-5472.CAN-07-3256 Appleton BA et al (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J 26:4902–4912. doi:10.1038/sj.emboj.7601906 Miao HQ et al (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242 West DC et al (2005) Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J Biol Chem 280:13457–13464. doi:10.1074/jbc.M410924200 Migdal M et al (1998) Neuropilin-1 is a placenta growth factor-2 receptor. J Biol Chem 273:22272–22278. doi:10.1074/jbc.273.35.22272 Glinka Y, Prud’homme GJ (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 84:302–310. doi:10.1189/jlb.0208090 Hu B et al (2007) Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene 26:5577–5586. doi:10.1038/sj.onc.1210348 Banerjee S et al (2006) Breast cancer cells secreted platelet-derived growth factor-induced motility of vascular smooth muscle cells is mediated through neuropilin-1. Mol Carcinog 45:871–880. doi:10.1002/mc.20248 Hsieh SH et al (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27:3746–3753. doi:10.1038/sj.onc.1211029 Herzog Y et al (2005) Segregation of arterial and venous markers in subpopulations of blood islands before vessel formation. Dev Dyn 232:1047–1055. doi:10.1002/dvdy.20257 Herzog Y et al (2001) Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 109:115–119. doi:10.1016/S0925-4773(01)00518-4 Toyofuku T et al (2004) Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18:435–447. doi:10.1101/gad.1167304 Bussolino F et al (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641. doi:10.1083/jcb.119.3.629 Gu C et al (2005) Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307:265–268. doi:10.1126/science.1105416 Behar O et al (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528. doi:10.1038/383525a0 Kanda T et al (2007) PlexinD1 deficiency induces defects in axial skeletal morphogenesis. J Cell Biochem 101:1329–1337. doi:10.1002/jcb.21306 Towler DA (2007) Vascular biology and bone formation: hints from HIF. J Clin Invest 117:1477–1480. doi:10.1172/JCI32518 Wang Y et al (2007) The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 117:1616–1626. doi:10.1172/JCI31581 Gomez C et al (2005) Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Dev Dyn 234:393–403. doi:10.1002/dvdy.20512 Futamura M et al (2007) Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Res 67:1451–1460. doi:10.1158/0008-5472.CAN-06-2485 Sekido Y et al (1996) Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA 93:4120–4125. doi:10.1073/pnas.93.9.4120 Potiron VA et al (2009) Semaphorins and their receptors in lung cancer. Cancer Lett 273:1–14. doi:10.1016/j.canlet.2008.05.032 Bielenberg DR et al (2004) Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest 114:1260–1271 Kessler O et al (2004) Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64:1008–1015. doi:10.1158/0008-5472.CAN-03-3090 Serini G et al (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424:391–397. doi:10.1038/nature01784 Acevedo LM et al (2008) Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 111:2674–2680. doi:10.1182/blood-2007-08-110205 Serini G et al (2008) Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Curr Opin Hematol 15:235–242. doi:10.1097/MOH.0b013e3282fa745b Maione F et al. (2009) Semaphorin 3A is an endogenous angiogenic inhibitor that blocks tumor growth and normalizes the vasculature in a mouse model of multistage tumorigenesis. J Clin Invest (submitted) Serini G et al (2006) Integrins and angiogenesis: a sticky business. Exp Cell Res 312:651–658. doi:10.1016/j.yexcr.2005.10.020 Casanovas O et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309. doi:10.1016/j.ccr.2005.09.005 Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8:309–316. doi:10.1038/nrc2346 Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi:10.1126/science.1104819 Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622. doi:10.1038/nrn2175 Lee S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703. doi:10.1016/j.cell.2007.06.054 Serini G et al (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779. doi:10.1093/emboj/cdg176 Tang N et al (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–495. doi:10.1016/j.ccr.2004.09.026 Damon DH (2006) Vascular endothelial-derived semaphorin 3 inhibits sympathetic axon growth. Am J Physiol Heart Circ Physiol 290:H1220–H1225. doi:10.1152/ajpheart.01232.2004 Ito T et al (2000) Repulsive axon guidance molecule Sema3A inhibits branching morphogenesis of fetal mouse lung. Mech Dev 97:35–45. doi:10.1016/S0925-4773(00)00401-9 Vacca A et al (2006) Loss of inhibitory semaphorin 3A (SEMA3A) autocrine loops in bone marrow endothelial cells of patients with multiple myeloma. Blood 108:1661–1667. doi:10.1182/blood-2006-04-014563 Basile JR et al (2007) Plexin-B1 utilizes RhoA and Rho kinase to promote the integrin-dependent activation of Akt and ERK and endothelial cell motility. J Biol Chem 282:34888–34895. doi:10.1074/jbc.M705467200 Basile JR et al (2006) Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA 103:9017–9022. doi:10.1073/pnas.0508825103 Sierra JR et al (2008) Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med 205:1673–1685. doi:10.1084/jem.20072602 Giordano S et al (2002) The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724. doi:10.1038/ncb843 Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–8. doi:10.1146/annurev.med.57.121304.131306