The microbiota–gut–brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice

Cellular and Molecular Life Sciences - Tập 79 - Trang 1-15 - 2022
Anirikh Chakrabarti1, Lucie Geurts2, Lesley Hoyles3, Patricia Iozzo4, Aletta D. Kraneveld5, Giorgio La Fata6, Michela Miani2, Elaine Patterson7, Bruno Pot8, Colette Shortt9, David Vauzour10
1Cargill R&D Centre Europe, Vilvoorde, Belgium
2International Life Sciences Institute European Branch, Brussels, Belgium
3Department of Biosciences, Nottingham Trent University, Nottingham, UK
4Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
5Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
6DSM Nutritional Products Ltd, Kaiseraugst, Switzerland
7IFF Health and Biosciences, Kantvik, Finland
8Yakult Europe BV, Almere, The Netherlands
9Ulster University, Coleraine, Co Londonderry, USA
10Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK

Tóm tắt

The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut–brain communication has become the focus of increased scientific interest, establishing the microbiota–gut–brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota’s possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota’s apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota–gut–brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public–private funding support. This will allow microbiota–gut–brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.

Tài liệu tham khảo

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV et al (2019) The microbiota–gut–brain axis. Physiol Rev 99(4):1877–2013 Morais LH, Schreiber HL, Mazmanian SK (2021) The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255 Liang S, Wu X, Jin F (2018) Gut–brain psychology: rethinking psychology from the microbiota-gut–brain axis. Front Integr Neurosci 12:33 Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194 Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S et al (2021) The contribution of gut microbiota-brain axis in the development of brain disorders. Front Neurosci 15:616883 Margolis KG, Cryan JF, Mayer EA (2021) The microbiota-gut–brain axis: from motility to mood. Gastroenterology 160(5):1486–1501 Novotný M, Klimova B, Valis M (2019) Microbiome and cognitive impairment: can any diets influence learning processes in a positive way? Front Aging Neurosci 11:170 Foster JA, Rinaman L, Cryan JF (2017) Stress and the gut–brain axis: regulation by the microbiome. Neurobiol Stress 7:124–136 Appleton J (2018) The gut–brain axis: influence of microbiota on mood and mental health. Integrative Med (Encinitas, Calif) 17(4):28–32 Liu L, Zhu G (2018) Gut–brain axis and mood disorder. Front Psych 9:223 Tognini P (2017) Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci 11:25 Lacorte E, Gervasi G, Bacigalupo I, Vanacore N, Raucci U, Parisi P (2019) A systematic review of the microbiome in children with neurodevelopmental disorders. Front Neurol 10:727 Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133 Mohajeri MH, La Fata G, Steinert RE, Weber P (2018) Relationship between the gut microbiome and brain function. Nutr Rev 76(7):481–496 Dinan TG, Cryan JF (2017) Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol 595(2):489–503 Oriach CS, Robertson RC, Stanton C, Cryan JF, Dinan TG (2016) Food for thought: the role of nutrition in the microbiota-gut–brain axis. Clin Nutr Exp 6:25–38 Ceppa F, Mancini A, Tuohy K (2019) Current evidence linking diet to gut microbiota and brain development and function. Int J Food Sci Nutr 70(1):1–19 Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 16:14 Liu RT, Walsh RFL, Sheehan AE (2019) Prebiotics and probiotics for depression and anxiety: a systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 102:13–23 Palacios-García I, Parada FJ (2019) Measuring the brain-gut axis in psychological sciences: a necessary challenge. Front Integr Neurosci 13:73 Osadchiy V, Martin CR, Mayer EA (2019) The gut–brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol 17(2):322–332 Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24 Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, Rowland I, Swann J, Türk J, Vermeiren J et al (2018) Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 57(1):25–49 Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, Watzl B (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26:26164 Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL, Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Walter J et al (2019) Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe 25(6):789-802.e785 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563 Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703 Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota–gut–brain axis: diet, microbiome, and neuropsychiatry. Transl Res J Lab Clin Med 179:223–244 Agostoni E, Chinnock JE, De Daly MB, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135(1):182–205 Prechtl JC, Powley TL (1990) B-Afferents: a fundamental division of the nervous system mediating homeostasis? Behav Brain Sci 13(2):289–300 Salvo-Romero ESP, Gareau MG (2020) Microbiota-immune interactions: from gut to brain. LymphoSign J 7(1):1–23 Coyle PK (2011) Dissecting the immune component of neurologic disorders: a grand challenge for the 21st century. Front Neurol 2:37 Fung TC (2020) The microbiota-immune axis as a central mediator of gut–brain communication. Neurobiol Dis 136:104714 Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24 Sun LJ, Li JN, Nie YZ (2020) Gut hormones in microbiota–gut–brain cross-talk. Chin Med J 133(7):826–833 Farzi A, Fröhlich EE, Holzer P (2018) Gut microbiota and the neuroendocrine system. Neurotherapeutics 15(1):5–22 Bao AM, Swaab DF (2019) The human hypothalamus in mood disorders: the HPA axis in the center. IBRO Rep 6:45–53 Dunn AJ (2007) The HPA axis and the immune system: a perspective. NeuroImmune biology, vol 7. Elsevier, New York, pp 3–15 A. C, M C (2018) Hormones and neurotransmitters: the differences and curious similarities. In: Medium Jewett BE, Sharma S: Physiology, GABA. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021 Allen MJ, Sabir S, Sharma S: GABA Receptor. In: StatPearls. Treasure Island (FL): StatPearls Publishing Mao JH, Kim YM, Zhou YX, Hu D, Zhong C, Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y et al (2020) Genetic and metabolic links between the murine microbiome and memory. Microbiome 8(1):53 Zheng J, Wittouck S, Salvetti E, Franz C, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J et al (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858 Duranti S, Ruiz L, Lugli GA, Tames H, Milani C, Mancabelli L, Mancino W, Longhi G, Carnevali L, Sgoifo A et al (2020) Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep 10(1):14112 Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276 Malinova TS, Dijkstra CD, de Vries HE (2018) Serotonin: a mediator of the gut–brain axis in multiple sclerosis. Multiple Scler (Houndmills, Basingstoke, England) 24(9):1144–1150 Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut–brain axis. Nutrients 8:1 Kennedy PJ, Cryan JF, Dinan TG, Clarke G (2017) Kynurenine pathway metabolism and the microbiota–gut–brain axis. Neuropharmacology 112(Pt B):399–412 Gheorghe CE, Martin JA, Manriquez FV, Dinan TG, Cryan JF, Clarke G (2019) Focus on the essentials: tryptophan metabolism and the microbiome-gut–brain axis. Curr Opin Pharmacol 48:137–145 Maini Rekdal V, NolBernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP (2020) A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife 9:1 Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J et al (2020) Short chain fatty acids in human gut and metabolic health. Benef Microbes 11(5):411–455 Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6(1):55 Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut–brain communication. Front Endocrinol 11:25 Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611 De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156(1–2):84–96 Wang D, Zhang H, Zeng M, Tang X, Zhu X, Guo Y, Qi L, Xie Y, Zhang M, Chen D (2021) Maternal high sugar and fat diet benefits offspring brain function via targeting on the gut–brain axis. Aging 13(7):10240–10274 Soares NL, Dorand VAM, Cavalcante HC, Batista KS, de Souza DM, Lima MDS, Salvadori M, Magnani M, Alves AF, Aquino JS (2021) Does intermittent fasting associated with aerobic training influence parameters related to the gut–brain axis of Wistar rats? J Affect Disord 293:176–185 Mörkl S, Wagner-Skacel J, Lahousen T, Lackner S, Holasek SJ, Bengesser SA, Painold A, Holl AK, Reininghaus E (2018) The role of nutrition and the gut–brain axis in psychiatry: a review of the literature. Neuropsychobiology 2:1–9 Grosso G (2021) Nutritional psychiatry: how diet affects brain through gut microbiota. Nutrients 13:4 Kincaid HJ, Nagpal R, Yadav H (2021) Diet-microbiota-brain axis in Alzheimer’s disease. Ann Nutr Metab 2021:1–7 Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP (2019) Gut reactions: breaking down xenobiotic–microbiome interactions. Pharmacol Rev 71(2):198–224 de Wouters DA, Rastelli M, Van Hul M, Delzenne NM, Cani PD, Everard A (2021) Gut microbes participate in food preference alterations during obesity. Gut Microbes 13(1):1959242 Cordaillat-Simmons M, Rouanet A, Pot B (2020) Live biotherapeutic products: the importance of a defined regulatory framework. Exp Mol Med 52(9):1397–1406 Codagnone MG, Spichak S, O’Mahony SM, O’Leary OF, Clarke G, Stanton C, Dinan TG, Cryan JF (2019) Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatr 85(2):150–163 Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD et al (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502 Liu X, Li X, Xia B, Jin X, Zou Q, Zeng Z, Zhao W, Yan S, Li L, Yuan S et al (2021) High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut–brain axis. Cell Metab 33(5):923-938.e926 Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K, Ishikawa H, Gondo Y, Shimizu K, Matsuki T et al (2016) Fermented milk containing Lactobacillus casei strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol 82(12):3649–3658 Takada M, Nishida K, Gondo Y, Kikuchi-Hayakawa H, Ishikawa H, Suda K, Kawai M, Hoshi R, Kuwano Y, Miyazaki K et al (2017) Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: a double-blind, randomised, placebo-controlled trial. Benef Microbes 8(2):153–162 Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW (2015) Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology 232(10):1793–1801 Romijn AR, Rucklidge JJ (2015) Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 73(10):675–693 Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y (2018) Interplay between the gut–brain axis, obesity and cognitive function. Front Neurosci 12:155 Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Casey CP, Taylor BC, Lane CJ et al (2019) Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177(6):1600-1618.e1617 Roussin L, Prince N, Perez-Pardo P, Kraneveld AD, Rabot S, Naudon L (2020) Role of the gut microbiota in the pathophysiology of autism spectrum disorder: clinical and preclinical evidence. Microorganisms 8:9 Liu J, Wan GB, Huang MS, Agyapong G, Zou TL, Zhang XY, Liu YW, Song YQ, Tsai YC, Kong XJ (2019) Probiotic therapy for treating behavioral and gastrointestinal symptoms in autism spectrum disorder: a systematic review of clinical trials. Curr Med Sci 39(2):173–184 Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejía JL, Hansen LH, Leigh Gibson E, Nielsen DS, Costabile A (2018) A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 6(1):133 Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, Caporaso JG, Krajmalnik-Brown R (2019) Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep 9(1):5821 Callaghan B (2020) Nested sensitive periods: how plasticity across the microbiota–gut–brain axis interacts to affect the development of learning and memory. Curr Opin Behav Sci 36:55–62 Vuong HE, Yano JM, Fung TC, Hsiao EY (2017) The microbiome and host behavior. Annu Rev Neurosci 40:21–49 D’Amato A, Di Cesare ML, Lucarini E, Man AL, Le Gall G, Branca JJV, Ghelardini C, Amedei A, Bertelli E, Regoli M et al (2020) Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome 8(1):140 Kundu P, Lee HU, Garcia-Perez I, Tay EXY, Kim H, Faylon LE, Martin KA, Purbojati R, Drautz-Moses DI, Ghosh S et al (2019) Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice. Sci Transl Med 11:518 Lach G, Fülling C, Bastiaanssen TFS, Fouhy F, Donovan ANO, Ventura-Silva AP, Stanton C, Dinan TG, Cryan JF (2020) Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period. Transl Psychiatry 10(1):382 Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, Spichak S, Olavarría-Ramírez L, Fitzgerald P, Morillas E et al (2021) Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat Aging 1(8):666–676 Bullich C, Keshavarzian A, Garssen J, Kraneveld A, Perez-Pardo P (2019) Gut vibes in Parkinson’s disease: the microbiota-gut–brain axis. Mov Disord Clin Pract 6(8):639–651 Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e1412 Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z et al (2019) Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 9(1):189 Kim MS, Kim Y, Choi H, Kim W, Park S, Lee D, Kim DK, Kim HJ, Choi H, Hyun DW et al (2020) Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69(2):283–294 Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C, Mannerås-Holm L, Wu H, Carreras A, Jeong H, Olofsson LE et al (2018) Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175(4):947-961.e917 Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH et al (2018) Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 24(7):1070–1080 Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, Bäckman L, Hänninen T, Jula A, Laatikainen T et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (Lond, Engl) 385(9984):2255–2263 Dardiotis E, Kosmidis MH, Yannakoulia M, Hadjigeorgiou GM, Scarmeas N (2014) The Hellenic Longitudinal Investigation of Aging and Diet (HELIAD): rationale, study design, and cohort description. Neuroepidemiology 43(1):9–14 Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J, Earls JC, Zimmer A, Glusman G, Robinson M et al (2021) Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab 3(2):274–286 Noonan S, Zaveri M, Macaninch E, Martyn K (2020) Food & mood: a review of supplementary prebiotic and probiotic interventions in the treatment of anxiety and depression in adults. BMJ Nutr Prevent Health 3(2):351–362 Ng QX, Peters C, Ho CYX, Lim DY, Yeo WS (2018) A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affect Disord 228:13–19 Marx W, Scholey A, Firth J, D’Cunha NM, Lane M, Hockey M, Ashton MM, Cryan JF, O’Neil A, Naumovski N et al (2020) Prebiotics, probiotics, fermented foods and cognitive outcomes: a meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 118:472–484 Chao L, Liu C, Sutthawongwadee S, Li Y, Lv W, Chen W, Yu L, Zhou J, Guo A, Li Z et al (2020) Effects of probiotics on depressive or anxiety variables in healthy participants under stress conditions or with a depressive or anxiety diagnosis: a meta-analysis of randomized controlled trials. Front Neurol 11:421 Iglesias-Vázquez L, Van Ginkel RG, Arija V, Canals J (2020) Composition of gut microbiota in children with autism spectrum disorder: a systematic review and meta-analysis. Nutrients 12:3 Nishiwaki H, Ito M, Ishida T, Hamaguchi T, Maeda T, Kashihara K, Tsuboi Y, Ueyama J, Shimamura T, Mori H et al (2020) Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov Disord 35(9):1626–1635 Safadi JM, Quinton AMG, Lennox BR, Burnet PWJ, Minichino A (2021) Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol psychiatry 20:21 Nguyen TT, Kosciolek T, Eyler LT, Knight R, Jeste DV (2018) Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J Psychiatr Res 99:50–61 Shen T, Yue Y, He T, Huang C, Qu B, Lv W, Lai H-Y (2021) The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front Aging Neurosci 13:40 Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A (2021) Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinson’s Dis 7(1):27 Xu M, Xu X, Li J, Li F (2019) Association between gut microbiota and autism spectrum disorder: a systematic review and meta-analysis. Front Psych 10:473 Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS One 9(5):e96905 Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PWJ (2016) Psychobiotics and the manipulation of bacteria-gut–brain signals. Trends Neurosci 39(11):763–781 Cohen Kadosh K, Basso M, Knytl P, Johnstone N, Lau JYF, Gibson GR (2021) Psychobiotic interventions for anxiety in young people: a systematic review and meta-analysis, with youth consultation. Transl Psychiatry 11(1):352 Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F (2021) Hidden role of gut microbiome dysbiosis in schizophrenia: antipsychotics or psychobiotics as therapeutics? Int J Mol Sci 22:14 Zhu G, Zhao J, Zhang H, Chen W, Wang G (2021) Probiotics for mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Foods (Basel, Switzerland) 10:7 Białecka-Dębek A, Granda D, Szmidt MK, Zielińska D (2021) Gut microbiota, probiotic interventions, and cognitive function in the elderly: a review of current knowledge. Nutrients 13:8 Cussotto S, Strain CR, Fouhy F, Strain RG, Peterson VL, Clarke G, Stanton C, Dinan TG, Cryan JF (2019) Differential effects of psychotropic drugs on microbiome composition and gastrointestinal function. Psychopharmacology 236(5):1671–1685 Bastiaanssen TFS, Cryan JF (2021) The microbiota-gut–brain axis in mental health and medication response: parsing directionality and causality. Int J Neuropsychopharmacol 24(3):216–220 Association WM (2013) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194 Group IEW (1996) ICH harmonised tripartite guideline: guideline for good clinical practice E6 (R1) 1996. ICH, Geneva NIH Human Microbiome Project. Institute for Genome Sciences, University of Maryland School of Medicine. https://www.hmpdacc.org/hmp/resources/ Quadram Institute Best Practice in Microbiome Research https://quadram.ac.uk/best-practice-in-microbiome-research/ Healey GR, Murphy R, Brough L, Butts CA, Coad J (2017) Interindividual variability in gut microbiota and host response to dietary interventions. Nutr Rev 75(12):1059–1080 Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, Fong R, Gray N, Grace PB, Mawson DH et al (2020) Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep 10(1):17964 Dragsted LO, Gao Q, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres Lacueva C et al (2018) Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr 13:14 Kuhnle GG (2012) Nutritional biomarkers for objective dietary assessment. J Sci Food Agric 92(6):1145–1149 Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632 Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194 Kelly JR, Borre YCOB, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118 Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796 Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW (2013) Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 2018:9 Tun HM, Konya T, Takaro TK, Brook JR, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Turvey SE et al (2017) Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome 5(1):40 He Y, Wu W, Wu S, Zheng HM, Li P, Sheng HF, Chen MX, Chen ZH, Ji GY, Zheng ZD et al (2018) Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome 6(1):172 Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y (2020) Host variables confound gut microbiota studies of human disease. Nature 587(7834):448–454 Gibson MK, Crofts TS, Dantas G (2015) Antibiotics and the developing infant gut microbiota and resistome. Curr Opin Microbiol 27:51–56 Nogacka A, Salazar N, Suárez M, Milani C, Arboleya S, Solís G, Fernández N, Alaez L, Hernández-Barranco AM, de Los Reyes-Gavilán CG et al (2017) Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome 5(1):93 Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, Becker AB, Scott JA, Kozyrskyj AL (2013) Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol 9(1):15 Laforest-Lapointe I, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Sycuro LK, Azad MB, Arrieta MC (2021) Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes 13(1):1–15 Iszatt N, Janssen S, Lenters V, Dahl C, Stigum H, Knight R, Mandal S, Peddada S, González A, Midtvedt T et al (2019) Environmental toxicants in breast milk of Norwegian mothers and gut bacteria composition and metabolites in their infants at 1 month. Microbiome 7(1):34 Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, Biagi E, Peano C, Severgnini M et al (2014) Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654 Loughman A, Staudacher HM, Rocks T, Ruusunen A, Marx W, Oan A, Jacka FN (2021) Diet and mental health. Modern Trends Psychiatry 32:100–112 Phillips MCL, Deprez LM, Mortimer GMN, Murtagh DKJ, McCoy S, Mylchreest R, Gilbertson LJ, Clark KM, Simpson PV, McManus EJ et al (2021) Randomized crossover trial of a modified ketogenic diet in Alzheimer’s disease. Alzheimer’s Res Ther 13(1):51 Klimenko NS, Tyakht AV, Popenko AS, Vasiliev AS, Altukhov IA, Ischenko DS, Shashkova TI, Efimova DA, Nikogosov DA, Osipenko DA et al (2018) Microbiome responses to an uncontrolled short-term diet intervention in the frame of the citizen science project. Nutrients 10:5 Park JC, Im S-H (2020) Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med 52(9):1383–1396 Workman MJ, Mahe MM, Trisno S, Poling HM, Watson CL, Sundaram N, Chang CF, Schiesser J, Aubert P, Stanley EG et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23(1):49–59 Le Berre-Scoul C, Chevalier J, Oleynikova E, Cossais F, Talon S, Neunlist M, Boudin H (2017) A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. J Physiol 595(2):583–598 Raimondi I, Izzo L, Tunesi M, Comar M, Albani D, Giordano C (2019) Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the microbiota-gut–brain axis in neurodegeneration. Front Bioeng Biotechnol 7:435 Putignani L, Gasbarrini A, Dallapiccola B (2019) Potential of multiomics technology in precision medicine. Curr Opin Gastroenterol 35(6):491–498 Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, LoncarTurukalo T, Przymus P, Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K et al (2021) Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol 12:634511 Ryan MJ, Schloter M, Berg G, Kinkel LL, Eversole K, Macklin JA, Rybakova D, Sessitsch A (2021) Towards a unified data infrastructure to support European and global microbiome research: a call to action. Environ Microbiol 23(1):372–375 Ryan MJ, Schloter M, Berg G, Kostic T, Kinkel LL, Eversole K, Macklin JA, Schelkle B, Kazou M, Sarand I et al (2021) Development of microbiome biobanks—challenges and opportunities. Trends Microbiol 29(2):89–92 CORDIS EU research results. European Commission. EU Publications Office. https://cordis.europa.eu GEMMA Multi-Omics Research in Autism. Funded by EU Horizon 2020 research & innovation programme. Grant agreement no. 8205033. 2021. https://www.gemma-project.eu Troisi J, Autio R, Beopoulos T, Bravaccio C, Carraturo F, Corrivetti G, Cunningham S, Devane S, Fallin D, Fetissov S et al (2020) Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) study design: biomarkers identification for precision treatment and primary prevention of autism spectrum disorders by an integrated multi-omics systems biology approach. Brain Sci 10:10 ONCOBIOME Microbiota against cancer international research program. Funded by EU Horizon 2020 research & innovation programme. Grant agreement no. 825410. 2021. https://www.oncobiome.eu MICROB-PREDICT. Funded by EU Horizon 2020 research & innovation programme. Grant agreement no. 825694. https://microb-predict.eu European Life Sciences Institute (ILSI Europe). https://ilsi.eu/ International Scientific Association for Probiotics and Prebiotics. https://isappscience.org EFSA Panel on Nutrition NF, Allergens F, Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch-Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ et al (2021) Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 19(9):06780