Simultaneous multiclass retinal lesion segmentation using fully automated RILBP-YNet in diabetic retinopathy

Biomedical Signal Processing and Control - Tập 86 - Trang 105205 - 2023
P. Geetha Pavani1,2, B. Biswal3, Tapan Kumar Gandhi1
1Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
2Department of CQI & Research, Sankar Foundation Eye Hospital and Institute, Visakhapatnam, India
3Centre for Medical Imaging Studies, Department of ECE, Gayatri Vidya Parishad College of Engineering (A), Visakhapatnam, India

Tài liệu tham khảo

Monemian, 2023, Detecting red - lesions from retinal fundus images using unique morphological features, Sci. Rep., 1 Guo, 2019, L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images, Neurocomputing., 349, 52, 10.1016/j.neucom.2019.04.019 Salz, 2015, Imaging in diabetic retinopathy, Middle East Afr. J. Ophthalmol., 22, 145, 10.4103/0974-9233.151887 Diabetic retinopathy - Diagnosis and treatment - Mayo Clinic, (2018). https://www.mayoclinic.org/diseases-conditions/diabetic-retinopathy/diagnosis-treatment/drc-20371617. International Diabetes Federation, International Federation on Ageing, International Agency for the Prevention of Blindness, The Diabetic Retinopathy Barometer Report: Global findings, 2019. https://www.iapb.org/wp-content/uploads/DR-Global-Report-1.pdf. “A Report by The Minister of State in the Ministry of Health and Family Welfare, India, Shri Ashwini Kumar Choubey” 2019., 2019. http://164.100.24.220/loksabhaquestions/annex/172/AU1915.pdf. P. Porwal, S.P. Id, R.K. Id, M. Kokare, Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for Diabetic Retinopathy Screening Research, (n.d.) 1–8, doi: 10.3390/data3030025. T. Ojala, M. Pietikainen, D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, in: Proc. 12th Int. Conf. Pattern Recognit., IEEE Comput. Soc. Press, 2002: pp. 582–585, doi: 10.1109/ICPR.1994.576366. Porwal, 2020, IDRiD: Diabetic retinopathy – segmentation and grading challenge, Med. Image Anal., 59, 101561, 10.1016/j.media.2019.101561 Karn, 2019, Robust retinal blood vessel segmentation using hybrid active contour model, IET Image Process., 13, 440, 10.1049/iet-ipr.2018.5413 B. Biswal, P. Geetha Pavani, P.K. Biswal, Controlled differential evolution based detection of neovascularization on optic disc using support vector machine (2020) 1–10, doi: 10.1515/bmt-2020-0110. Biswal, 2018, Robust retinal blood vessel segmentation using line detectors with multiple masks, IET Image Process., 12, 389, 10.1049/iet-ipr.2017.0329 Chandrakumar, 2016, Classifying diabetic retinopathy using deep learning architecture, Int. J. Eng. Res. V, 5, 19 Pratt, 2016, Convolutional neural networks for diabetic retinopathy, Proc. Comput. Sci., 90, 200, 10.1016/j.procs.2016.07.014 Wu, 2017, Automatic detection of microaneurysms in retinal fundus images, Comput. Med. Imaging Graph., 55, 106, 10.1016/j.compmedimag.2016.08.001 Ege, 2000, Screening for diabetic retinopathy using computer based image analysis and statistical classification, Comput. Methods Programs Biomed., 62, 165, 10.1016/S0169-2607(00)00065-1 Roychowdhury, 2014, DREAM: Diabetic retinopathy analysis using machine learning, IEEE J. Biomed. Heal. Informatics., 18, 1717, 10.1109/JBHI.2013.2294635 Jebaseeli, 2019, Retinal blood vessel segmentation from diabetic retinopathy images using tandem PCNN model and deep learning based SVM, Optik (Stuttg), 199 Welikala, 2014, Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification, Comput. Methods Programs Biomed., 114, 247, 10.1016/j.cmpb.2014.02.010 Sopharak, 2008, Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods, Comput. Med. Imaging Graph., 32, 720, 10.1016/j.compmedimag.2008.08.009 He, 2020, Segmenting diabetic retinopathy lesions in multispectral images using low-dimensional spatial-spectral matrix representation, IEEE J. Biomed. Heal. Informatics., 24, 493, 10.1109/JBHI.2019.2912668 Sopharak, 2009, Automatic exudate detection from non-dilated diabetic retinopathy retinal images using Fuzzy C-means clustering, Sensors., 9, 2148, 10.3390/s90302148 Padmasini, 2016, Detection of neovascularisation using K-means clustering through registration of peripapillary OCT and fundus retinal images, 2016 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC, 2017, 1 Y.M. Rajput, Extraction of cotton wool spot using multi resolution analysis and classification using K-means clustering, 2015, 6–10. Lachure, 2015, Diabetic Retinopathy using morphological operations and machine learning, Souvenir 2015 IEEE Int. Adv. Comput. Conf. IACC, 2015, 617, 10.1109/IADCC.2015.7154781 Lecun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Ronneberger, 2015, U-net: Convolutional networks for biomedical image segmentation, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)., 9351, 234 Zhou, 2018 Cicek, 2016, 3D U-Net: Learning dense volumetric segmentation from sparse annotation, Med. Image Comput. Comput. Interv., 424 Ding, 2020, CAB U-Net: An end-to-end category attention boosting algorithm for segmentation, Comput. Med. Imaging Graph., 84, 10.1016/j.compmedimag.2020.101764 Hu, 2019, S-UNet: A bridge-style U-net framework with a saliency mechanism for retinal vessel segmentation, IEEE Access., 7, 174167, 10.1109/ACCESS.2019.2940476 Biswal, 2021, Robust segmentation of exudates from retinal surface using M-CapsNet via EM routingBiomed, Signal Process Control., 68, 102770, 10.1016/j.bspc.2021.102770 Wu, 2020, NFN+: A novel network followed network for retinal vessel segmentation, Neural Networks., 126, 153, 10.1016/j.neunet.2020.02.018 Jiang, 2020, Multi-path recurrent U-Net segmentation of retinal fundus image, Appl. Sci., 10, 3777, 10.3390/app10113777 Tan, 2017, Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network, Inf. Sci. (Ny), 420, 66, 10.1016/j.ins.2017.08.050 Zeng, 2019, RIC-Unet: An improved neural network based on UNET for nuclei segmentation in histology images, IEEE Access., 7, 21420, 10.1109/ACCESS.2019.2896920 Badrinarayanan, 2017, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39, 2481, 10.1109/TPAMI.2016.2644615 Shelhamer, 2017, Fully convolutional networks for semantic segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 39, 640, 10.1109/TPAMI.2016.2572683 Chen, 2018, DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs, IEEE Trans. Pattern Anal. Mach. Intell., 40, 834, 10.1109/TPAMI.2017.2699184 Noh, 2015, Learning deconvolution network for semantic segmentation, Proc. IEEE Int. Conf. Comput. Vis. 2015 Inter, 1520 Wan, 2021, EAD-Net: A novel lesion segmentation method in diabetic retinopathy using neural networks, Dis. Markers., 2021, 1 Kou, 2020, An enhanced residual u-net for microaneurysms and exudates segmentation in fundus images, IEEE Access., 8, 185514, 10.1109/ACCESS.2020.3029117 Guo, 2022, CARNet: Cascade attentive RefineNet for multi-lesion segmentation of diabetic retinopathy images, Complex Intell. Syst., 8, 1681, 10.1007/s40747-021-00630-4 M. Siebert, R. Philipp, Multi-task lesion segmentation with a lightweight U 2 -Net to enhance explainability of mobile screening systems for diabetic retinopathy, 2021. Garifullin, 2021, Deep Bayesian baseline for segmenting diabetic retinopathy lesions: Advances and challenges, Comput. Biol. Med., 136, 10.1016/j.compbiomed.2021.104725 Decencière, 2013, TeleOphta : Machine learning and image processing methods for teleophthalmology, 34, 196 Staal, 2004, Ridge-based vessel segmentation in color images of the retina, IEEE Trans. Med. Imaging., 23, 501, 10.1109/TMI.2004.825627 M.M.D. Goldbaum, The STARE Project, U.S. Natl. Institutes Heal. (2004). http://www.ces.clemson.edu/∼ahoover/stare. CHASE_DB1 | Retinal image database | Retinal Image Analysis, (n.d.). https://blogs.kingston.ac.uk/retinal/chasedb1/. Mo, 2018, Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks, Neurocomputing., 290, 161, 10.1016/j.neucom.2018.02.035 Xie, 2015, Holistically-nested edge detection, Proc. IEEE Int. Conf. Comput. Vis. 2015 Inter, 1395 Z. Yu, C. Feng, M.Y. Liu, S. Ramalingam, CASENet: Deep category-aware semantic edge detection, in: Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017-Janua (2017) 1761–1770, doi: 10.1109/CVPR.2017.191. L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11211 LNCS, 2018, pp. 833–851, doi: 10.1007/978-3-030-01234-2_49. Sarhan, 2019, Multi-scale microaneurysms segmentation using embedding triplet loss, 174 Yan, 2019, Learning mutually local-global U-Nets for high-resolution retinal lesion segmentation in fundus images, 2019 Xue, 2019, Knowledge-based systems deep membrane systems for multitask segmentation in diabetic retinopathy, Knowledge-Based Syst., 183, 104887, 10.1016/j.knosys.2019.104887 Libiao, 2021, Semantic segmentation based on DeeplabV3+ with multiple fusions of low-level features, IAEAC 2021 - IEEE 5th Adv Inf. Technol. Electron. Autom. Control Conf., 2021, 1957 S. Mehta, E. Mercan, J. Bartlett, D. Weaver, J.G. Elmore, L. Shapiro, S.M. B, E. Mercan, J. Bartlett, D. Weaver, J.G. Elmore, L. Shapiro, Y-Net: Joint segmentation and classification for diagnosis of breast biopsy images, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11071 LNCS (2018) pp. 893–901, doi: 10.1007/978-3-030-00934-2_99. Morales, 2017, Retinal disease screening through local binary patterns, IEEE J. Biomed. Heal. Informat., 21, 184, 10.1109/JBHI.2015.2490798 Yan, 2016, Semantic indexing with deep learning: a case study, Big Data Anal., 1, 1, 10.1186/s41044-016-0007-z