Adsorption and separation of CO 2 from N 2 -rich gas on zeolites: Na-X faujasite vs Na-mordenite

Journal of CO2 Utilization - Tập 19 - Trang 266-275 - 2017
Aline Villarreal1, Gabriella Garbarino2, Paola Riani3, Elisabetta Finocchio2, Barbara Bosio2, Jorge Ramírez1, Guido Busca2
1UNICAT, Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Cd. Universitaria, México D.F., Coyoacán 04510, Mexico
2DICCA, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro, 1, 16145 Genoa, Italy
3DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy

Tài liệu tham khảo

Sircar, 2003, Gas separation by zeolites, 1063 Busca, 2014, 204 2015 Tagliabue, 2009, Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J., 155, 553, 10.1016/j.cej.2009.09.010 Petersson, 2009 Montanari, 2011, CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents, Energy, 36, 314, 10.1016/j.energy.2010.10.038 Sun, 2015, Selection of appropriate biogas upgrading technology – a review of biogas cleaning, upgrading and utilisation, Renew. Sustain. Energy Rev., 51, 521, 10.1016/j.rser.2015.06.029 Sreenivasulu, 2015, Development trends in porous adsorbents for carbon capture, Environ. Sci. Technol., 49, 12641, 10.1021/acs.est.5b03149 Songolzadeh, 2014, Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions, Sci. World J., 828131 Leung, 2014, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev., 39, 426, 10.1016/j.rser.2014.07.093 Wang, 2011, CO2 capture by solid adsorbents and their applications: current status and new trends, Energy Environ. Sci., 4, 42, 10.1039/C0EE00064G Lozinska, 2012, Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite RHO at conditions relevant to carbon capture from flue gases, J. Am. Chem. Soc., 134, 17628, 10.1021/ja3070864 Webley, 2014, Adsorption technology for CO2 separation and capture. A perspective, Adsorption, 20, 225, 10.1007/s10450-014-9603-2 Pirngruber, 2014, Post-combustion CO2 capture by vacuum swing adsorption using zeolites – a feasibility study, Oil Gas Sci. Technol. Rev. IFPEN, 69, 989, 10.2516/ogst/2012067 Arran Gibson, 2016, Adsorption materials and processes for carbon capture from gas-fired power plants: AMP gas, Ind. Eng. Chem. Res., 55, 3840, 10.1021/acs.iecr.5b05015 Takamura, 2001, Application of high-pressure swing adsorption process for improvement of CO2 recovery system from flue gas, Can. J. Chem. Eng., 79, 812, 10.1002/cjce.5450790517 Ling, 2014, Overview of CO2 capture from flue gas streams by vacuum pressure swing adsorption technology, Austin J. Chem. Eng., 1, 1009 Bahamon, 2016, Systematic evaluation of materials for post-combustion CO2 capture in a temperature swing adsorption process, Chem. Eng. J., 284, 438, 10.1016/j.cej.2015.08.098 Grande, 2010, Challenges of electric swing adsorption for CO2 capture, ChemSusChem, 3, 892, 10.1002/cssc.201000059 Dıaz, 2008, Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: effect of adsorption temperature and water treatment, Ind. Eng. Chem. Res., 47, 412, 10.1021/ie070685c Merel, 2008, Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites, Ind. Eng. Chem. Res., 47, 209, 10.1021/ie071012x Wirawan, 2006, CO2 adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change response method, Micropor. Mesopor. Mater., 91, 196, 10.1016/j.micromeso.2005.11.047 Hernandez-Huesca, 1999, Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites, Sep. Purif. Technol., 15, 163, 10.1016/S1383-5866(98)00094-X Delgado, 2006, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures, Sep. Purif. Technol., 48, 223, 10.1016/j.seppur.2005.07.027 Rege, 2001, A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina, Chem. Eng. Sci., 56, 3781, 10.1016/S0009-2509(01)00095-1 Brandani, 2004, The effect of water on the adsorption of CO2 and C3H8 on type X zeolites, Ind. Eng. Chem. Res., 43, 8339, 10.1021/ie040183o Lu Wang, 2013, Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant, Chem. Eng. Sci., 101, 615, 10.1016/j.ces.2013.07.028 Li, 2009, Competition of CO2/H2O in adsorption based CO2 capture, Energy Proc., 1, 1123, 10.1016/j.egypro.2009.01.148 Grace, Synthetic Non Fibrous Zeolites Product Stewardship Summary, Available on Internet. Montanari, 2010, Purification of landfill biogases from siloxanes by adsorption: a study of silica and 13X zeolite adsorbents on hexamethylcyclotrisiloxane separation, Chem. Eng. J., 165, 859, 10.1016/j.cej.2010.10.032 Phung, 2014, Catalytic conversion of ethyl acetate over faujasite zeolites, Appl. Catal. A: Gen., 470, 72, 10.1016/j.apcata.2013.10.028 Choudary, 1995, Sorption isotherms of methane, ethane, ethene and carbon dioxide on NaX, NaY and Na-mordenite zeolites, J. Chem. Soc., Faraday Trans., 91, 2935, 10.1039/ft9959102935 Ko, 2003, Optimization of a pressure swing adsorption process using zeolite 13X for CO2 sequestration, Ind. Eng. Chem. Res., 42, 339, 10.1021/ie0204540 Rege, 2000, Sorbents for air prepurification in air separation, Chem. Eng. Sci., 55, 4827, 10.1016/S0009-2509(00)00122-6 Wang, 1998, Adsorption separation of low concentrations of CO2 and NO2 by synthetic zeolites, Energy Fuels, 12, 1055, 10.1021/ef980109g Cavenati, 2004, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095, 10.1021/je0498917 Wang, 2009, Adsorption equilibrium of carbon dioxide and water vapour on zeolites 5A and 13 X and silica gel: pure components, J. Chem. Eng. Data, 54, 2839, 10.1021/je800900a Zhang, 2009, Effect of flue gas impurities on CO2 capture performance from flue gas from coal-fired power stations by vacuum swing adsorption, Energy Proc., 1, 1115, 10.1016/j.egypro.2009.01.147 Bonelli, 2000, Vibrational and thermodynamic study of the adsorption of carbon dioxide on the zeolite Na-ZSM-5, Langmuir, 16, 4976, 10.1021/la991363j Busca, 1982, Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces, Mater. Chem., 7, 89, 10.1016/0390-6035(82)90059-1 Bonelli, 2000, Experimental and quantum chemical studies on the adsorption of carbon dioxide on alkali-metal-exchanged ZSM-5 zeolites, J. Phys. Chem., 104, 10978, 10.1021/jp000555g Montanari, 2008, On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation, Vib. Spectrosc., 46, 45, 10.1016/j.vibspec.2007.09.001 Ramis, 1991, Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species, Mater. Chem. Phys., 29, 425, 10.1016/0254-0584(91)90037-U Coluccia, 1999, Characterization of microporous and mesoporous materials by the adsorption of molecular probes: FT-IR and UV-vis studies, Micropor. Mesopor. Mater., 30, 43, 10.1016/S1387-1811(99)00019-0 Frantz, 1998, Raman spectra of potassium carbonate and bicarbonate aqueous fluids at elevated temperatures and pressures: comparison with theoretical simulations, Chem. Geol., 152, 211, 10.1016/S0009-2541(98)00058-8 Maurin, 2005, Adsorption mechanism of carbon dioxide in faujasites: grand canonical Monte Carlo simulations and microcalorimetry measurements, J. Phys. Chem. B, 109, 16084, 10.1021/jp052716s Pulido, 2009, Adsorption of CO2 on sodium-exchanged ferrierites: the bridged CO2 complexes formed between two extraframework cations, J. Phys. Chem. C, 113, 2928, 10.1021/jp810038b Jaramillo, 2004, Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A, J. Phys. Chem. B, 108, 20155, 10.1021/jp048078f Coluccia, 1999, Characterisation of microporous and mesoporous materials by the adsorption of molecular probes: FTIR and UV–Vis studies, Micropor. Mesopor. Mater., 30, 43, 10.1016/S1387-1811(99)00019-0 Aresta, 2016, 35 Frising, 2008, Extraframework cation distributions in X and Y faujasite zeolites: a review, Micropor. Mesopor. Mater., 114, 27, 10.1016/j.micromeso.2007.12.024 Porcher, 2014, Experimental determination of electrostatic properties of Na–X zeolite from high resolution X-ray diffraction, Phys. Chem. Chem. Phys., 16, 12228, 10.1039/C3CP55397C Goursot, 1997, Modeling of adsorption properties of zeolites: correlation with the structure, J. Phys. Chem. B, 101, 6420, 10.1021/jp971230b Alberti, 1986, The crystal structure refinement of a natural mordenite, Z. Kristallogr., 175, 249, 10.1524/zkri.1986.175.3-4.249 Devantour, 2001, Localization of water molecules and sodium ions in Na-mordenite, by thermally stimulated current measurement, J. Phys. Chem. B, 105, 9297, 10.1021/jp004268o Maurin, 2002, Modelling of the cation motions in complex system: case of Na-mordenites, J. Non-Cryst. Solids, 307–310, 1050, 10.1016/S0022-3093(02)01571-5 Bell, 2004, Modeling the effect of hydration in zeolite Na+-mordenite, J. Phys. Chem. B, 108, 3739, 10.1021/jp034151a Hefti, 2015, Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-% and 13X, Micropor. Mesopor. Mater., 215, 215, 10.1016/j.micromeso.2015.05.044 Vujić, 2016, Transferable force-field for modelling of CO2, N2, O2 and Ar in all silica and Na+ exchanged zeolites, Model. Simul. Mater. Sci. Eng., 24, 045002, 10.1088/0965-0393/24/4/045002 Hunter, 2005, Proton affinity evaluation, 20899