Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes

Biomaterials - Tập 30 Số 8 - Trang 1551-1559 - 2009
Wenguang Liu1, Chao Deng1, Christopher R. McLaughlin1,2, Per Fagerholm3, Neil Lagali3,2, Belinda Heyne4, J. C. Scaiano4, Mitchell A. Watsky5, Yasuhiro Kato6, Réjean Munger2, Naoshi Shinozaki6, Fengfu Li2, May Griffith1,2
1Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario KIH 8L6, Canada
2University of Ottawa Eye Institute, 501 Smyth Road, Ottawa, Ontario, Canada
3Department of Ophthalmology, Linköping University, Linköping, Sweden
4Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
5Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN 38163, USA
6Department of Ophthalmology and Cornea Centre, Tokyo Dental College, Chiba, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yannas, 2000, Synthesis of organs: in vitro or in vivo?, Proc Natl Acad Sci U S A, 97, 9354, 10.1073/pnas.180313497

Griffith, 2008, Corneal regenerative medicine: substitutes for transplantation, 37, 10.1007/978-3-540-33681-5_3

Hicks, 2006, AlphaCor – clinical outcomes, Cornea, 25, 1034, 10.1097/01.ico.0000229982.23334.6b

Liu, 2006, A simple, cross-linked collagen tissue substitute for corneal implantation, Invest Ophthalmol Vis Sci, 47, 1869, 10.1167/iovs.05-1339

Liu, 2006, Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications, Biomacromolecules, 7, 1819, 10.1021/bm060160o

Liu, 2008, Recombinant collagen for tissue engineered corneal substitutes, Biomaterials, 29, 1147, 10.1016/j.biomaterials.2007.11.011

McLaughlin, 2008, Regeneration of corneal cells and nerves in an implanted collagen corneal substitute, Cornea, 27, 580, 10.1097/ICO.0b013e3181658408

Kim, 2005, Preparation of a chemically anchored phospholipid monolayer on an acrylated polymer substrate, Biomaterials, 26, 3435, 10.1016/j.biomaterials.2004.09.066

Wachiralarpphaithoon, 2007, Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices, Biomaterials, 28, 984, 10.1016/j.biomaterials.2006.10.024

Nam, 2007, Physical and biological properties of collagen phospholipids polymer hybrid gels, Biomaterials, 28, 3153, 10.1016/j.biomaterials.2007.03.001

Goda, 2006, Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker, Polymer, 47, 1390, 10.1016/j.polymer.2005.12.043

Li, 2005, Recruitment of multiple cell lines by collagen-synthetic copolymer matrices in corneal regeneration, Biomaterials, 26, 3093, 10.1016/j.biomaterials.2004.07.063

Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, et al. Tissue engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci 2008;49(9):3887–94.

Funhoff, 2004, Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH, Biomacromolecules, 5, 32, 10.1021/bm034041+

Wang, 2006, Synthesis and characterizations of biodegradable and crosslinkable poly(ɛ-caprolactone fumarate), poly(ethylene glycol fumarate), and their amphiphilic copolymer, Biomaterials, 27, 6832, 10.1016/j.biomaterials.2005.07.013

Maurice, 1962, 296

Patel, 1995, Refractive index of human corneal epithelium and stroma, J Refract Surg, 11, 100, 10.3928/1081-597X-19950301-09

Van Den Berg, 1994, Light transmittance of the human cornea from 320 to 700nm for different ages, Vision Res, 34, 1453, 10.1016/0042-6989(94)90146-5

Beems, 1990, Light transmission of the cornea in whole human eyes, Exp Eye Res, 50, 393, 10.1016/0014-4835(90)90140-P

Zeng, 2001, A comparison of biomechanical properties between human andporcine cornea, J Biomech, 34, 533, 10.1016/S0021-9290(00)00219-0

Crabb, 2006, Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent, Tissue Eng, 12, 1565, 10.1089/ten.2006.12.1565

Jue, 1986, The mechanical properties of rabbit and human cornea, J Biomech, 19, 1025, 10.1016/0021-9290(86)90135-1

Pettit, 1985, Glucose permeability of potential intrastromal implants, Invest Ophthalmol Vis Sci, 26, 151

Maurice, 1965, The distribution and movement of serum albumin in the cornea, Exp Eye Res, 4, 355, 10.1016/S0014-4835(65)80052-5

Newsome, 1981, Detection of specific collagen types in normal and keratoconus corneas, Invest Ophthalmol Vis Sci, 20, 738

Newsome, 1982, Human corneal stroma contains three distinct collagens, Invest Ophthalmol Vis Sci, 22, 376

Assouline, 1992, Effect of growth factors on collagen lattice contraction by human keratocytes, Invest Ophthalmol Vis Sci, 33, 1742

Smith, 1986, Collagen types I, III, and V in human embryonic and fetal skin, Am J Anat, 175, 507, 10.1002/aja.1001750409

Fleischmajer, 1980, Immunoelectron microscopy of type III collagen in normal and scleroderma skin, J Invest Dermatol, 75, 189, 10.1111/1523-1747.ep12522644

Kiritoshi, 2004, Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties, Polymer, 45, 7499, 10.1016/j.polymer.2004.09.014

Ringvold, 2003, Impact of the environment on the mammalian corneal epithelium, Invest Ophthalmol Vis Sci, 44, 10, 10.1167/iovs.02-0173

Ringvold, 1998, Corneal epithelium and UV-protection of the eye, Acta Ophthalmol Scand, 76, 149, 10.1034/j.1600-0420.1998.760205.x

Kolozsvari, 2002, UV absorbance of the human cornea in the 240–400nm range, Invest Ophthalmol Vis Sci, 43, 2165

Sionkowska, 2006, Effects of solar radiation on collagen-based biomaterials, Int J Photoenergy, 10.1155/IJP/2006/29196

Myung, 2008, Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing, J Biomed Mater Res A

Watanabe, 2007, Cytocompatible biointerface on poly(lactic acid) by enrichment with phosphorylcholine groups for cell engineering, Mater Sci Eng C, 27, 227, 10.1016/j.msec.2006.05.013

Hsiue, 2007, Preparation and characterization of poly(2-methacryloyloxyethyl phosphorylcholine)-block-poly(d,l-lactide) polymer nanoparticles, J Polym Sci Part A Polym Chem, 45, 688, 10.1002/pola.21741