A Magnetofluorescent Carbon Dot Assembly as an Acidic H2O2‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy

Advanced Materials - Tập 30 Số 13 - 2018
Qingyan Jia1,2, Jiechao Ge1,2, Weimin Liu1,2, Xiuli Zheng1,2, Shiqing Chen1,2, Yongmei Wen1,2, Hongyan Zhang1, Pengfei Wang1,2
1Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Tóm tắt

Abstract

Recent studies indicate that carbon dots (CDs) can efficiently generate singlet oxygen (1O2) for photodynamic therapy (PDT) of cancer. However, the hypoxic tumor microenvironment and rapid consumption of oxygen in the PDT process will severely limit therapeutic effects of CDs due to the oxygen‐dependent PDT. Thus, it is becoming particularly important to develop a novel CD as an in situ tumor oxygenerator for overcoming hypoxia and substantially enhancing the PDT efficacy. Herein, for the first time, magnetofluorescent Mn‐CDs are successfully prepared using manganese(II) phthalocyanine as a precursor. After cooperative self‐assembly with DSPE‐PEG, the obtained Mn‐CD assembly can be applied as a smart contrast agent for both near‐infrared fluorescence (FL) (maximum peak at 745 nm) and T1‐weighted magnetic resonance (MR) (relaxivity value of 6.97 mM−1 s−1) imaging. More interestingly, the Mn‐CD assembly can not only effectively produce 1O2 (quantum yield of 0.40) but also highly catalyze H2O2 to generate oxygen. These collective properties of the Mn‐CD assembly enable it to be utilized as an acidic H2O2‐driven oxygenerator to increase the oxygen concentration in hypoxic solid tumors for simultaneous bimodal FL/MR imaging and enhanced PDT. This work explores a new biomedical use of CDs and provides a versatile carbon nanomaterial candidate for multifunctional nanotheranostic applications.

Từ khóa


Tài liệu tham khảo

10.1021/acs.chemrev.5b00008

10.1039/C4CS00269E

10.1016/j.nantod.2014.09.004

10.1002/anie.200906623

10.1021/ja073527l

10.1039/C6CS00442C

10.1021/acs.chemrev.7b00037

10.1166/jbn.2014.1881

10.1039/C4CS00379A

10.1016/j.bios.2017.07.065

10.1002/adfm.201501250

10.1039/C5CS00811E

10.1002/adma.201602581

10.1002/advs.201500002

10.1002/ppsc.201500243

10.1002/adma.201702910

10.1002/adma.201604436

10.1002/adom.201700416

10.1002/adma.201603443

10.1002/anie.201700757

10.1002/adma.201605416

10.1002/adfm.201501524

10.1021/acsami.7b01599

10.1002/adma.201200650

10.1002/adfm.201400961

10.1021/acs.chemrev.5b00148

10.1002/adma.201500323

10.1016/j.biomaterials.2016.07.008

10.1021/acsami.6b07453

10.1021/acs.chemmater.6b03695

10.1038/ncomms5596

10.1007/s40843-016-0115-0

10.1002/adhm.201600924

10.1002/adhm.201500720

10.1039/C6CS00616G

10.1038/nrc1894

10.1021/cr400532z

10.1039/C6CS00271D

10.1002/anie.201708005

10.1038/ncomms12499

10.1021/acs.chemrev.5b00244

10.1021/cr300213b

10.1039/C6NR03459D

10.1038/natrevmats.2017.24

10.1002/adma.201605928

10.1039/C6CS00592F

10.1021/acs.chemrev.6b00525

10.1038/ncomms6834

10.1002/anie.201604130

10.1002/adma.201204623

10.1038/ncomms5712

10.1021/nn3058642

10.1002/adma.201602738

10.1039/C7MH00726D

10.1002/adma.201605021

10.1002/advs.201600460

10.1002/adma.201603864

10.1002/adma.201605357

10.1021/acsnano.6b07525

10.1002/adma.201603702

10.1002/anie.201408472

10.7150/thno.16141

10.1039/C7BM00043J

Luna M. C., 2002, Cancer Res., 62, 1458

10.1039/C4NR02495H

10.1038/ncomms9785

10.1002/adfm.201504803

10.1002/adhm.201600121

10.1002/adma.201504617

10.1002/adma.201602111

10.1002/smll.201700278

10.1039/c3cc46969g

10.1038/nnano.2016.280

10.1002/anie.201510031

10.1038/ncomms14998

10.1038/s41467-017-00424-8

10.1038/nri1312

10.1002/adma.201601902

10.1002/adma.201405141

10.1002/adfm.201600676

10.1016/j.colsurfb.2016.10.039

10.1016/j.biomaterials.2016.10.030

10.1021/nn405773r

10.1021/nl400368v

10.1103/PhysRevB.85.045209

10.1002/adfm.201603084

10.1021/cm5003669

10.1039/C6NR05878G

10.1002/chem.201502463

10.1016/j.apsusc.2010.10.051

10.1021/acsami.6b02132

10.1002/anie.201002307

10.1021/acsami.6b05817

10.1039/C6NR09401E

10.1021/nn1035262

10.1111/j.1751-1097.1999.tb08240.x

10.1002/anie.201307358

10.1002/adfm.201502650

10.1021/ja0386905

10.1016/j.addr.2015.09.012

10.1002/anie.200902672

10.1021/jacs.6b11382

10.1002/anie.201509810

10.1002/adhm.201601419

10.1002/anie.201409149

10.1021/la503299j

10.1002/anie.201403036

10.1002/adhm.201300600

10.1039/C1CS15188F

10.1021/ja01196a003

10.1007/s10934-016-0296-7

10.1002/cjce.5450810507

10.1002/anie.201510748

10.1002/anie.201609050

10.1002/adma.201700373

10.1021/jacs.5b10748

10.1002/anie.200604775

10.1038/ncomms12967

10.1021/nn5062386