HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS

Springer Science and Business Media LLC - Tập 144 - Trang 465-488 - 2022
Elke Braems1,2, Valérie Bercier1,2, Evelien Van Schoor1,2,3, Kara Heeren1,2, Jimmy Beckers1,2, Laura Fumagalli1,2, Lieselot Dedeene4,2,3,5, Matthieu Moisse1,2, Ilse Geudens4,2, Nicole Hersmus1,2, Arpan R. Mehta6,7, Bhuvaneish T. Selvaraj6,7, Siddharthan Chandran6,7, Ritchie Ho8, Dietmar R. Thal3,9, Philip Van Damme1,2,10, Bart Swinnen4,2, Ludo Van Den Bosch1,2
1Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
2Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
3Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
4Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven, University of Leuven, Leuven, Belgium
5Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
6UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
7Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
8Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, USA
9Department of pathology, University Hospitals Leuven, Leuven, Belgium
10Department of Neurology, University Hospitals Leuven, Leuven, Belgium

Tóm tắt

A ‘GGGGCC’ repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.

Tài liệu tham khảo

Al-Chalabi A, Kwak S, Mehler M, Rouleau G, Siddique T, Strong M et al (2013) Genetic and epigenetic studies of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener 14:44–52. https://doi.org/10.3109/21678421.2013.778571 Andrade NS, Ramic M, Esanov R, Liu W, Rybin MJ, Gaidosh G et al (2020) Dipeptide repeat proteins inhibit homology-directed DNA double strand break repair in C9ORF72 ALS/FTD. Mol Neurodegener 15:13. https://doi.org/10.1186/s13024-020-00365-9 Bampton A, Gittings LM, Fratta P, Lashley T, Gatt A (2020) The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 140:599–623. https://doi.org/10.1007/s00401-020-02203-0 Bampton A, Gatt A, Humphrey J, Cappelli S, Bhattacharya D, Foti S et al (2021) HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 142:609–627. https://doi.org/10.1007/s00401-021-02340-0 Berson A, Goodman LD, Sartoris AN, Otte CG, Aykit JA, Lee VMY et al (2019) Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropathol Commun 7:65. https://doi.org/10.1186/s40478-019-0710-x Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77. https://doi.org/10.1089/ZEB.2008.0555 Bomsztyk K, Denisenko O, Ostrowski J (2004) hnRNP K: one protein multiple processes. BioEssays 26:629–638. https://doi.org/10.1002/bies.20048 Braddock DT, Baber JL, Levens D, Clore GM (2002) Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: Solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J 21:3476–3485. https://doi.org/10.1093/emboj/cdf352 Braems E, Swinnen B, Van Den Bosch L (2020) C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 140:625–643. https://doi.org/10.1007/s00401-020-02214-x Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471 Cooper-Knock J, Shaw PJ, Kirby J (2014) The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype. Acta Neuropathol 127:333–345. https://doi.org/10.1007/s00401-014-1251-9 Cooper-Knock J, Walsh MJ, Higginbottom A, Highley JR, Dickman MJ, Edbauer D et al (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137:2040–2051. https://doi.org/10.1093/brain/awu120 Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB et al (2015) Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol 130:63–75. https://doi.org/10.1007/s00401-015-1429-9 D’Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y et al (2012) Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149:1023–1034. https://doi.org/10.1016/j.cell.2012.03.043 Dedeene L, Van Schoor E, Race V, Moisse M, Vandenberghe R, Poesen K et al (2019) An ALS case with 38 (G4C2)-repeats in the C9orf72 gene shows TDP-43 and sparse dipeptide repeat protein pathology. Acta Neuropathol 137:855–858. https://doi.org/10.1007/S00401-019-01996-Z/FIGURES/1 DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011 Dols-Icardo O, García-Redondo A, Rojas-García R, Sánchez-Valle R, Noguera A, Gómez-Tortosa E et al (2014) Characterization of the repeat expansion size in C9orf72 in amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet 23:749–754. https://doi.org/10.1093/hmg/ddt460 Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S et al (2013) RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention. Neuron 80:415–428. https://doi.org/10.1016/j.neuron.2013.10.015 Freibaum BD, Taylor JP (2017) The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front Mol Neurosci 10:35. https://doi.org/10.3389/fnmol.2017.00035 Fumagalli L, Young FL, Boeynaems S, De Decker M, Mehta AR, Swijsen A et al (2021) C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Sci Adv 7:eabg3013. https://doi.org/10.1126/SCIADV.ABG3013 Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM (2016) Aberrant hnRNP K expression: all roads lead to cancer. Cell Cycle 15:1552–1557. https://doi.org/10.1080/15384101.2016.1164372 Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867. https://doi.org/10.1007/s00439-016-1683-5 Greaves CV, Rohrer JD (2019) An update on genetic frontotemporal dementia. J Neurol 266:2075–2086. https://doi.org/10.1007/s00415-019-09363-4 Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R et al (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8:861. https://doi.org/10.1038/s41467-017-00911-y Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim MS et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200. https://doi.org/10.1038/nature13124 Harley J, Patani R (2020) Stress-specific spatiotemporal responses of RNA-binding proteins in human stem-cell-derived motor neurons. Int J Mol Sci 21:8346. https://doi.org/10.3390/ijms21218346 He L, Xue X, Wang Z, Hou E, Liu Y, Liang M et al (2015) Transcriptional regulation of heterogeneous nuclear ribonucleoprotein K gene expression. Biochimie 109:27–35. https://doi.org/10.1016/j.biochi.2014.12.002 Kok JR, Palminha NM, Dos Santos SC, El-Khamisy SF, Ferraiuolo L (2021) DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol Life Sci 78:5707–5729. https://doi.org/10.1007/s00018-021-03872-0 Konopka A, Whelan DR, Jamali MS, Perri E, Shahheydari H, Toth RP et al (2020) Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol Neurodegener 15:51. https://doi.org/10.1186/s13024-020-00386-4 Lafarga V, Sirozh O, Díaz-López I, Galarreta A, Hisaoka M, Zarzuela E et al (2021) Widespread displacement of DNA- and RNA-binding factors underlies toxicity of arginine-rich cell-penetrating peptides. EMBO J 40:e103311. https://doi.org/10.15252/embj.2019103311 Laird AS, van Hoecke A, De Muynck L, Timmers M, van den Bosch L, Van Damme P et al (2010) Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLoS ONE 5:e13368. https://doi.org/10.1371/journal.pone.0013368 Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167:774–788. https://doi.org/10.1016/j.cell.2016.10.002 Lemmens R, Van Hoecke A, Hersmus N, Geelen V, D’Hollander I, Thijs V et al (2007) Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Hum Mol Genet 16:2359–2365. https://doi.org/10.1093/hmg/ddm193 Li J, Chen Y, Xu X, Jones J, Tiwari M, Ling J et al (2019) HNRNPK maintains epidermal progenitor function through transcription of proliferation genes and degrading differentiation promoting mRNAs. Nat Commun 10:4198. https://doi.org/10.1038/s41467-019-12238-x Liu C, Li Y, Hu R, Han W, Gao S (2019) Knockdown of ribonucleotide reductase regulatory subunit M2 increases the drug sensitivity of chronic myeloid leukemia to imatinib-based therapy. Oncol Rep 42:571–580. https://doi.org/10.3892/or.2019.7194 Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B et al (2021) A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 12:683. https://doi.org/10.1038/s41419-021-03969-1 Lubelsky Y, Ulitsky I (2018) Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555:107–111. https://doi.org/10.1038/nature25757 Lynch EM, Robertson S, FitzGibbons C, Reilly M, Switalski C, Eckardt A et al (2021) Transcriptome analysis using patient iPSC-derived skeletal myocytes: Bet1L as a new molecule possibly linked to neuromuscular junction degeneration in ALS. Exp Neurol 345:113815. https://doi.org/10.1016/j.expneurol.2021.113815 Mah LJ, El-Osta A, Karagiannis TC (2010) γh2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686. https://doi.org/10.1038/leu.2010.6 Majounie E, Renton AE, Mok K, Dopper EGP, Waite A, Rollinson S et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330. https://doi.org/10.1016/S1474-4422(12)70043-1 Maor-Nof M, Shipony Z, Lopez-Gonzalez R, Nakayama L, Zhang YJ, Couthouis J et al (2021) p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR). Cell 184:689–708. https://doi.org/10.1016/j.cell.2020.12.025 Marín-Béjar O, Huarte M (2015) RNA pulldown protocol for in vitro detection and identification of RNA-associated proteins. Methods Mol Biol 1206:87–95. https://doi.org/10.1007/978-1-4939-1369-5_8 McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042 Mehta AR, Gregory JM, Dando O, Carter RN, Burr K, Nanda J et al (2021) Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 141:257–279. https://doi.org/10.1007/s00401-020-02252-5 Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P et al (2013) C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol 126:845–857. https://doi.org/10.1007/s00401-013-1200-z Mizielinska S, Grönke S, Niccoli T, Ridler CE, Clayton EL, Devoy A et al (2014) C9orf72 repeat expansions cause neurodegeneration in drosophila through arginine-rich proteins. Science 345:1192–1194. https://doi.org/10.1126/science.1256800 Mori K, Nihei Y, Arzberger T, Zhou Q, Mackenzie IR, Hermann A et al (2016) Reduced hnRNPA3 increases C9orf72 repeat RNA levels and dipeptide-repeat protein deposition. EMBO Rep 17:1314–1325. https://doi.org/10.15252/embr.201541724 Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM et al (2015) Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Hum Mol Genet 24:1655–1669. https://doi.org/10.1093/hmg/ddu578 Moujalled D, Grubman A, Acevedo K, Yang S, Ke YD, Moujalled DM et al (2017) TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Hum Mol Genet 26:1732–1746. https://doi.org/10.1093/hmg/ddx093 Moumen A, Magill C, Dry KL, Jackson SP (2013) ATM-dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage. Cell Cycle 12:698–704. https://doi.org/10.4161/cc.23592 Moumen A, Masterson P, O’Connor MJ, Jackson SP (2005) hnRNP K: An HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123:1065–1078. https://doi.org/10.1016/j.cell.2005.09.032 Ng ASL, Rademakers R, Miller BL (2015) Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann NY Acad Sci 1338:71–93. https://doi.org/10.1111/nyas.12638 Nihei Y, Mori K, Werner G, Arzberger T, Zhou Q, Khosravi B et al (2020) Poly-glycine–alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol 139:99–118. https://doi.org/10.1007/s00401-019-02082-0 Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M et al (2010) Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 24:333–338. https://doi.org/10.1101/gad.1863810 Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197 Pelisch F, Pozzi B, Risso G, Muñoz MJ, Srebrow A (2012) DNA damage-induced heterogeneous nuclear ribonucleoprotein K SUMOylation regulates p53 transcriptional activation. J Biol Chem 287:30789–30799. https://doi.org/10.1074/jbc.M112.390120 Prudencio M, Belzil VV, Batra R, Ross CA, Gendron TF, Pregent LJ et al (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18:1175–1182. https://doi.org/10.1038/nn.4065 Purice MD, Taylor JP (2018) Linking hnRNP function to ALS and FTD pathology. Front Neurosci 12:326. https://doi.org/10.3389/fnins.2018.00326 Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. https://doi.org/10.1038/nn.3584 Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010.A Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM et al (2018) C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 9:347. https://doi.org/10.1038/s41467-017-02729-0 Shah KN, Wilson EA, Malla R, Elford HL, Faridi JS (2015) Targeting ribonucleotide reductase M2 and NF-κB activation with didox to circumvent tamoxifen resistance in breast cancer. Mol Cancer Ther 14:2411–2421. https://doi.org/10.1158/1535-7163.MCT-14-0689 Stickeler E, Fraser SD, Honig A, Chen AL, Berget SM, Cooper TA (2001) The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J 20:3821–3830. https://doi.org/10.1093/emboj/20.14.3821 Swinnen B, Bento-Abreu A, Gendron TF, Boeynaems S, Bogaert E, Nuyts R et al (2018) A zebrafish model for C9orf72 ALS reveals RNA toxicity as a pathogenic mechanism. Acta Neuropathol 135:427–443. https://doi.org/10.1007/s00401-017-1796-5 Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10:661–670. https://doi.org/10.1038/nrneurol.2014.184 Swinnen B, Robberecht W, Van Den Bosch L (2020) RNA toxicity in non-coding repeat expansion disorders. EMBO J 39:e101112. https://doi.org/10.15252/embj.2018101112 Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C et al (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 21:4094–4103. https://doi.org/10.1093/hmg/dds238 Tyzack GE, Neeves J, Crerar H, Klein P, Ziff O, Taha DM et al (2021) Aberrant cytoplasmic intron retention is a blueprint for RNA binding protein mislocalization in VCP-related amyotrophic lateral sclerosis. Brain 144:1985–1993. https://doi.org/10.1093/brain/awab078 Tziortzouda P, Van Den Bosch L, Hirth F (2021) Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 22:197–208. https://doi.org/10.1038/s41583-021-00431-1 Van Blitterswijk M, Mullen B, Wojtas A, Heckman MG, Diehl NN, Baker MC et al (2014) Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Mol Neurodegener 9:38. https://doi.org/10.1186/1750-1326-9-38 Van Der Ende EL, Jackson JL, White A, Seelaar H, Van Blitterswijk M, Van Swieten JC (2021) Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J Neurol Neurosurg Psychiatry 92:502–509. https://doi.org/10.1136/jnnp-2020-325377 Van Gils M, Vanakker OM (2019) Morpholino-mediated gene knockdown in zebrafish: it is all about dosage and validation. J Invest Dermatol 139:1599–1600. https://doi.org/10.1016/J.JID.2019.01.017 Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS et al (2012) EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med 18:1418–1422. https://doi.org/10.1038/nm.2901 Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X, Xiao R et al (2020) A large-scale binding and functional map of human RNA-binding proteins. Nature 583:711–719. https://doi.org/10.1038/s41586-020-2077-3 Wang Y, Musich PR, Cui K, Zou Y, Zhu MY (2015) Neurotoxin-Induced DNA Damage is Persistent in SH-SY5Y Cells and LC Neurons. Neurotox Res 27:368–383. https://doi.org/10.1007/s12640-015-9521-4 Wang Z, Qiu H, He J, Liu L, Xue W, Fox A et al (2020) The emerging roles of hnRNPK. J Cell Physiol 235:1995–2008. https://doi.org/10.1002/jcp.29186 Wiesmann N, Strozynski J, Beck C, Zimmermann N, Mendler S, Gieringer R et al (2017) Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells. Carcinogenesis 38:321–328. https://doi.org/10.1093/carcin/bgx006 Yin S, Lopez-Gonzalez R, Kunz RC, Gangopadhyay J, Borufka C, Gygi SP et al (2017) Evidence that C9ORF72 dipeptide repeat proteins associate with U2 snRNP to cause mis-splicing in ALS/FTD patients. Cell Rep 19:2244–2256. https://doi.org/10.1016/j.celrep.2017.05.056 Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y (2009) Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 284:18085–18095. https://doi.org/10.1074/jbc.M109.003020