Thermodynamic Modeling of Aqueous LiCl, LiBr, LiI, and LiNO3 Solutions

Fluid Phase Equilibria - Tập 531 - Trang 112914 - 2021
Toni E. Kirkes1, Sina H. Saravi1, Chau-Chyun Chen1
1Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA

Tài liệu tham khảo

Lassin, 2015, A Thermodynamic Model of Aqueous Electrolyte Solution Behavior and Solid-Liquid Equilibrium in the Li-H-Na-K-Cl-OH-H2O System to Very High Concentrations (40 Molal) and from 0 to 250°C, Am. J. Sci., 315, 204, 10.2475/03.2015.02 Kamali, 2017, Towards Large Scale Preparation of Carbon Nanostructures in Molten LiCl, Carbon, 77, 835, 10.1016/j.carbon.2014.05.089 Wietelmann, 2005, Lithium and Lithium Compounds Mallela, 2004, Trends in Cardiac Pacemaker Batteries, Ind. Pacing Electrophysiol. J., 4, 201 Guidotti, 2002, All-Lithium, Iodide-Based, Low-Melting Electrolytes for High-Temperature Batteries, Proceedings of the Electrochemical Society, Vols. 2002-19, 63 Kenisarin, 2016, Salt Hydrates as Latent Heat Storage Materials: Thermophysical Properties and Costs, Sol. Energy Mater. Sol. Cells, 145, 255, 10.1016/j.solmat.2015.10.029 Petit, 2008, Ab Initio Molecular Dynamics Study of a Highly Concentrated LiCl Aqueous Solution, Journal of Chemical Theory and Computation, 4, 1040, 10.1021/ct800007v Stokes, 1948, Ionic Hydration and Activity in Electrolyte Solutions, J. Am. Chem. Soc., 70, 1870, 10.1021/ja01185a065 Chen, 1999, Use of Hydration and Dissociation Chemistries with the Electrolyte-NRTL Model, AIChE J, 45, 1576, 10.1002/aic.690450719 Pitzer, 1973, Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 77, 268, 10.1021/j100621a026 Holmes, 1981, Isopiestic Studies of Aqueous Solutions at Elevated Temperatures. VI. LiCl and CsCl, J. Chem. Thermodynamics, 13, 1035, 10.1016/0021-9614(81)90003-3 Simonson, 1986, Thermodynamics of Multicomponent, Miscible, Ionic Systems: The System LiNO3-KNO3-H2O, J. Phys. Chem., 90, 3009, 10.1021/j100404a043 Brendler, 1994, Isopiestic Measurements at High Temperatures: I. Aqueous Solutions of LiCl, CsCl, and CaCl2 at 155°C, J. Sol. Chem., 23, 1061, 10.1007/BF00976256 Monnin, 2002, Thermodynamics of the LiCl + H2O System, J. Chem. Eng. Data, 47, 1331, 10.1021/je0200618 Zeng, 2006, Thermodynamic Consistency of the Solubility and Vapor Pressure of a Binary Saturated Salt + Water System. 1. LiCl + H2O, J. Chem. Eng. Data, 51, 315, 10.1021/je050322o Guendouzi, 2003, Water Activities and Osmotic and Activity Coefficients of Aqueous Solutions of NItrates at 25°C by the Hygrometric Method, J. Sol. Chem., 32, 535, 10.1023/A:1025365900350 Errougui, 2008, Thermodynamic Properties of Ternary Aqueous Solutions of {Li/Cl/NO3/SO4}(aq) Mixtures at T=298.15 K, Fluid Phase Equil, 266, 76, 10.1016/j.fluid.2008.01.029 Herold, 1987, Thermodynamic Properties of Lithium Bromide/Water Solutions, ASHRAE Trans, 93, 35 McNeely, 1979, Thermodynamic Properties of Aqueous Solutions of Lithium Bromide, ASHRAE Trans, 85, 413 Lenard, 1992, Properties of Lithium Bromide-Water Solutions at High Temperatures and Concentrations - Part IV: Vapor Pressure, ASHRAE Trans, 98, 167 Chua, 2000, Improved Thermodynamic Property Fields of LiBr-H2O Solution, Int. J. Refrig., 23, 412, 10.1016/S0140-7007(99)00076-6 Patek, 2006, A Computationally Effective Formulation of the Thermodynamic Properties of LiBr-H2O Solutions from 273 to 500 K Over Full Composition Range, Int. J. Refrig., 29, 566, 10.1016/j.ijrefrig.2005.10.007 Simonin, 1996, Real Ionic Solutions in the Mean Spherical Approximation. 1. Simple Salts in the Primitive Model, J. Phys. Chem., 100, 7704, 10.1021/jp953567o Zeng, 2003, Phase Diagram Calculation of Molten Salt Hydrates using the Modified BET Equation, CALPHAD, 27, 243, 10.1016/j.calphad.2003.09.004 Zeng, 2008, Thermodynamic Study of the System (LiCl + LiNO3 + H2O), J. Chem. Thermodynamics, 40, 232, 10.1016/j.jct.2007.06.018 Gibbard, 1973, Liquid-Vapor Equilibrium of Aqueous Lithium Chloride, from 25 to 100°C and from 1.0 to 18.5 Molal, and Related Properties, J. Chem. Eng. Data, 18, 293, 10.1021/je60058a011 Patil, 1990, Thermodynamic Properties of Aqueous Electrolyte Solutions. 1. Vapor Pressure of Aqueous Solutions of LiCl, LiBr, and LiI, J. Chem. Eng. Data, 35, 166, 10.1021/je00060a020 Patil, 1992, Thermodynamic Properties of Aqueous Electrolyte Solutions. 3. Vapor Pressure of Aqueous Solutions of LiNO3, LiCl+LiNO3, and LiBr+LiNO3, J. Chem. Eng. Data, 37, 136, 10.1021/je00005a036 Song, 2009, Symmetric Electrolyte Nonrandom Two-Liquid Activity Coefficient Model, Ind. Eng. Chem. Res., 48, 7788, 10.1021/ie9004578 Hossain, 2018, Revisiting Electrolyte Thermodynamic Models: Insights from Molecular Simulations, AIChE J, 64, 3728, 10.1002/aic.16327 Saravi, 2019, Bridging Two-Liquid Theory with Molecular Simulations for Electrolytes: An Investigation of Aqueous NaCl Solution, AIChE J, 65, 1315, 10.1002/aic.16521 Chen, 1982, Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems, AIChE J, 28, 588, 10.1002/aic.690280410 Chen, 1986, A Local Composition Model for the Excess Gibbs Energy of Aqueous Electrolyte Systems, AIChE J, 32, 444, 10.1002/aic.690320311 Renon, 1968, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChE Journal, 14, 135, 10.1002/aic.690140124 Guggenheim, 1952 Robinson, 2002 S. H. Saravi and C.-C. Chen, Personal Communication, 2020. Tanveer, 2017, Thermodynamic Model of Aqueous Mg2+–Na+–K+–Cl− Quaternary System, Fluid Phase Equilibria, 437, 56, 10.1016/j.fluid.2017.01.004 Tanveer, 2016, Thermodynamic Modeling of Aqueous Ca2+–Na+–K+–Cl− Quaternary System, Fluid Phase Equilibria, 409, 193, 10.1016/j.fluid.2015.09.048 Honarparvar, 2018, Comprehensive Thermodynamic Modeling of Saline Water with Electrolyte NRTL Model: A Study of Aqueous Sr2+-Na+-Cl−-SO42− Quaternary System, Fluid Phase Equilibria, 470, 221, 10.1016/j.fluid.2017.11.025 Honarparvar, 2017, Comprehensive Thermodynamic Modeling of Saline Water with Electrolyte NRTL Model: A Study of Aqueous Ba2+-Na+-Cl−-SO42− Quaternary System, Fluid Phase Equilibria, 447, 29, 10.1016/j.fluid.2017.05.016 Britt, 1973, The Estimation of Parameters in Nonlinear, Implicit Models, Technometrics, 15, 233, 10.1080/00401706.1973.10489037 Robinson, 1949, Tables of Osmotic and Activity Coefficients of Electrolytes in Aqueous Solution at 25°C, Trans. Faraday Soc., 45, 612, 10.1039/TF9494500612 Hamer, 1972, Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25°C, J. Phys. Chem. Ref. Data, 1, 1047, 10.1063/1.3253108 Zaytsev, 1992 Schimmel, 1960, Solubilities of Lithium Chloride and Lithium Thiocyanate at Low Temperatures, J. Chem. Eng. Data, 5, 519, 10.1021/je60008a030 Seidell, 1965 Wagman, 1982, The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11 Robinson, 1935, The Activity Coefficients of the Alkali Bromides and Iodides in Aqueous Solution from Vapor Pressure Measurements, J. Amer. Chem. Soc., 57, 1161, 10.1021/ja01310a004 Boryta, 1970, Solubility of Lithium Bromide in Water between -50 and +100°C (45 to 70% Lithium Bromide), J. Chem. Eng. Data, 15, 142, 10.1021/je60044a030 Pearce, 1932, The Vapor Pressures of Aqueous Solutions of Lithium Nitrate and the Activity Coefficients of Some Alkali Salts in Solutions of High Concentration at 25°C, J. Phys. Chem., 54, 3544 Campbell, 1958, The System Lithium Nitrate-Ethanol-Water and its Component Binary Systems, Can. J. Chem., 36, 518, 10.1139/v58-074 Hao, 2020, Nonrandom Two-Liquid Activity Coefficient Model with Association Theory, AIChE J, e17061 Hao, 2019, Nonrandom Two-Liquid Segment Activity Coefficient Model with Association Theory, Ind. Eng. Chem. Res., 58, 12773, 10.1021/acs.iecr.9b02078