Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians

Landslides - Tập 11 - Trang 981-992 - 2014
Tomáš Pánek1, Filip Hartvich2, Vlasta Jankovská3, Jan Klimeš2, Petr Tábořík2, Miroslav Bubík4, Veronika Smolková1, Jan Hradecký1
1Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
2Department of Engineering Geology, Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
3Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Brno, Czech Republic
4Czech Geological Survey, Brno, Czech Republic

Tóm tắt

The gently concave piedmont of the marginal slope of the Flysch Carpathians in the Czech Republic has long been considered to comprise a system of pediments or coalescent alluvial fans. However, within one of the typical sections of this piedmont, large successive landslides with long travel distances of ~2.5 km have been identified through geophysical measurements and the investigation of an extensive artificial exposure. Accelerator mass spectrometry (AMS) radiocarbon dating and pollen analysis demonstrate that the uppermost generations of landslide deposits have originated since ~56 ka BP during the warmer and more humid interpleniglacial conditions of Marine Isotope Stage 3 (MIS 3). The geomorphological evidence for landsliding during MIS 3 has almost completely disappeared from this region due to intensive periglacial processes operating during the Last Glacial Maximum and subsequent fluvial and anthropogenic processes operating during the Holocene. The considerable antiquity of the studied terrestrial landslide bodies is unique within the context of Europe. This study shows the value of re-examining landscape development using new techniques and fresh exposures.

Tài liệu tham khảo

Antinao JL, Gosse J (2009) Large rockslides in the southern Central Andes of Chile (32-34.5°S): tectonic control and significance for post-Miocene landscape evolution. Geomorphol 104:117–133 Antoine P, Rousseau DD, Zöller L, Lang A, Munaut AV, Hatte C, Fontugne M (2001) High-resolution record of the last interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine Area, Germany. Quat Int 76(77):211–229 Balescu S, Ritz JF, Lamothe M, Auclair M, Todbileg M (2007) Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay mountains, Mongolia. Quat Geochronol 2:290–295 Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484 Bertran P, Fabre R (2005) Pleistocene cryostructures and landslide at Petit-Bost (southwestern France, 45°N). Geomorphol 71:344–356 Bíl M, Müller I (2008) The origin of shallow landslides in Moravia (Czech Republic) in the spring 2006. Geomorphol 99:246–253 Burda J, Hartvich F, Valenta J, Smítka V, Rybář J (2013) Climate-induced landslide reactivation at the edge of the Most Basin (Czech Republic) - progress towards better landslide prediction. Nat Hazards Earth Syst Sci 13:361–374 Costa CH, González Díaz EF (2007) Age constraints and paleoseismic implication of rock avalanches in the northern Patagonian Andes, Argentina. J S Am Earth Sci 24:48–57 Czudek T (1995) Cryoplanation terraces—a brief review and some remarks. Geogr Ann 77A:95–105 Czudek T (2012) Soft rock pediments in South Moravia, Czech Republic. Neth J Geosci 91:215–222 Danišík M, Pánek T, Matýsek D, Dunkl I, Frisch W (2008) Apatite fission track and (U-Th)/He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians. Z für Geomorphol, NF Hauptbänd 52:273–289 Davies TRH, Warburton J, Dunning SS, Bubeck AAP (2013) A large landslide event in a post-glacial landscape: rethinking glacial legacy. Earth Surf Process and Landf 38:1261–1268 Demek J, Mackovčin P, Slavík P (2011) Rock pediments and bahada in the Frenštátská brázda Furrow (the Moravian-Silesian Carpathians, Czech Republic). Geomorphol Slovaca et Bohemica 11:42–49 Engel Z, Nývlt D, Křížek M, Treml V, Jankovská V, Lisá L (2010) Sedimentary evidence of landscape and climate history since the end of MIS 3 in the Krkonoše Mountains, Czech Republic. Quat Sci Rev 29:913–927 Engels S, Bohncke SJP, Heiri O, Schaber K, Sirocko F (2008) The lacustrine sediment record of Oberwinkler Maar (Eifel, Germany): chironomid and macro-remain-based inferences of environmental changes during Oxygen Isotope Stage 3. Boreas 37:414–425 French HM (2007) The periglacial environment. Wiley, Chichester Gutiérrez F, Lucha P, Galve JP (2010) Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir Spanish Pyrenees. Geomorphol 124:124–136 Gutiérrez F, Linares R, Roqué C, Zarroca M, Rosell J, Galve JP, Carbonel D (2012) Investigating gravitational grabens related to lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees). Lithosphere 4:331–353 Hartvich F, Valenta J (2011) The identification of faults using morphostructural and geophysical methods: a case study from Strašín cave site. Acta Geodyn Geomater 8:425–441 Hartvich F, Valenta J (2013) Tracing an intra-montane fault: an interdisciplinary approach. Surv in Geophys 34:317–347 Hermanns RL, Longva O (2012) Rapid rock-slope failures. In: Clague JJ, Stead D (eds) Landslides (types, mechanisms and modeling). Cambridge University Press, Cambridge, pp 59–70 Hradecký J, Pánek T, Břízová E (2004) Geomorfologie a stáří vybraných svahových deformací Slezských Beskyd a Jablunkovské brázdy. Geografie-Sborník ČGS 109:289–303 (in Czech) Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process and Landf 37:77–91 Klimeš J, Blahůt J (2012) Landslide risk analysis and its application in regional planning: an example from the highlands of the Outer Western Carpathians, Czech Republic. Nat Hazards 64:1779–1803 Krejčí O, Baroň I, Bíl M, Hubatka F, Jurová Z, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys and Chem of the Earth 27:1567–1576 Jankovská V, Pokorný P (2008) Forest vegetation on the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80(3):307–324 Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152 Margielewski W (2001) Late Glacial and Holocene climatic changes registered in forms and deposits of the Klaklowo landslide (Beskid Średni Range, Outer Carpathians). Studia Geomorphol Carpatho-Balcanica 35:63–79 Margielewski W (2006) Records of the Late Glacial-Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. Area (Polish Outer Carpathians). Folia Quat 76:1–149 Mather AE, Griffiths JS, Stokes M (2003) Anatomy of fossil landslide from the Pleistocene of SE Spain. Geomorphol 50:135–149 McColl ST, Davies TT (2011) Evidence for a rock-avalanche origin for ‘The Hillocks’ “moraine”, Otago, New Zealand. Geomorphol 127:216–224 Menčík E, Adamová M, Dvořák J, Dudek A, Jetel J, Jurková A, Hanzlíková E, Houša V, Peslová H, Rybářová L, Šmíd B, Šebesta J, Tyráček J, Vašíček Z (1983) Geologie Moravskoslezských Beskyd a Podbeskydské pahorkatiny (Geology of the Moravskoslezské Beskydy Mountains and Podbeskydská pahorkatina hilly country). Ústřední Ústav Geologický, Praha (in Czech, with English Summary) Menčík E, Tyráček J (1985) Přehledná geologická mapa Beskyd a Podbeskydské pahorkatiny v měřítku 1:100 000 (Synoptic geological map of the Beskydy Mountains and Podbeskydská pahorkatina hills at 1:100 000). Ústřední Ústav Geologický, Praha (in Czech) Mentlík P, Engel Z, Braucher R, Léanni L, Team A (2013) Chronology of Late Weichselian glaciation in the Bohemian Forest in Central Europe. Quat Sci Rev 65:120–128 Milsom J (2003) Field geophysics. Wiley, Chichester Nichols KK, Bierman PR, Ross Foniri W, Gillespie AR, Caffee M, Finkel R (2006) Dates and rates of arid region geomorphic processes. GSA Today 16:4–11 Members NGRIP (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151 Nývlt D, Engel Z, Tyráček J (2011) Pleistocene glaciations of Czechia. In: Ehlers J, Gibbard PL, Hughes PD (eds.) Developments in quaternary sciences 15, pp 37–46 Pánek T, Hradecký J, Smolková V, Šilhán K, Minár J, Zernitskaya V (2010) The largest prehistoric landslide in northwestern Slovakia: chronological constraints of the Kykula long-runout landslide and related dammed lakes. Geomorphol 120:233–247 Pánek T, Brázdil R, Klimeš J, Smolková V, Hradecký J, Zahradníček P (2011a) Rainfall-induced landslide event of May 2010 in the eastern part of the Czech Republic. Landslides 8:507–516 Pánek T, Šilhán K, Tábořík P, Hradecký J, Smolková V, Lenart J, Brázdil R, Kašičková L, Pazdur A (2011b) Catastrophic slope failure and its origins: case of the May 2010 Girová Mountain long-runout rockslide (Czech Republic). Geomorphol 130:352–364 Pinto L, Hérail G, Sepúlveda SA, Krop P (2008) A Neogene giant landslide in Tarapaca, northern Chile: a signal of instability of the westernmost Altiplano and palaeoseismicity effects. Geomorphol 102:532–541 Ryb U, Matmon A, Porat N, Katz O (2013) From mass-wasting to slope stabilization—putting constrains on a tectonically induced transitioning slope erosion mode: a case study in the Judea Hills, Israel. Earth Surf Process and Landf 38:551–560 Raška P, Hartvich F, Cajz V, Adamovič J (2013) Structural setting of the Čertovka landslide (Ústí nad Labem, Czech Republic) analysed by morphostructural analysis and electrical resistivity tomography. Geological Quarterly. doi:10.7306/gq.1134 Rybář J, Nemčok A (1968) Landslide investigations in Czechoslovakia. Proc 23rd Int Geol Congress, Sect 1, 183–198 Rybář J, Klimeš J, Novosad S (2011) Mapy náchylnosti k sesouvání ve flyšových horninách Západních Karpat a verifikace jejich spolehlivosti po mimořádných dešťových srážkách v květnu 2010 (Landslide susceptibility maps in flysch rocks of the Western Carpathians and their verification after extreme rainfalls in May 2010). Geotechnika 4:17–27 (in Czech) Sanhueza-Pino K, Korup O, Hetzel R, Munack H, Weidinger JT, Dunning T, Ormukov C, Kubik PW (2011) Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan. Quat Res 76:295–304 Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphol 93:55–73 Spötl C, Mangini A, Richards DA (2006) Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quat Sci Rev 25:1127–1136 Starkel L (1997) Mass movements during the Holocene: the Carpathian example and the European perspective. Paläoklimaforschung-Palaeoclim Res 19:385–400 Turnbull JM, Davies TRH (2006) A mass movement origin for cirques. Earth Surf Process and Landf 31:1129–1148 Vandenberghe J, Czudek T (2008) Pleistocene cryopediments on variable terrain. Permafr and Periglac Process 19:71–83 Van den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella N, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9:357–369 Van Meerbeeck CJ, Renssen H, Roche DM (2009) How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? Perspectives from equilibrium simulations. Clim of the Past 5:33–51 Van Meerbeeck CJ, Renssen H, Roche DM, Wohlfarth B, Bohncke SJP, Bos JAA, Engels S, Helmens KF, Sánchez-Goñi MF, Svensson A, Vandenberghe J (2011) The nature of MIS 3 stadial-interstadial transitions in Europe: new insights from model-data comparisons. Quat Sci Rev 30:3618–3637 Žebera K (1955) Ostravské proluviální suché delty. Věstník ÚÚG 30:181–184 (in Czech)