Simplified model and lattice Boltzmann algorithm for microscale electro-osmotic flows and heat transfer

International Journal of Heat and Mass Transfer - Tập 51 - Trang 586-596 - 2008
Yong Shi1, T.S. Zhao1, Zhaoli Guo1
1Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Tài liệu tham khảo

Culbertson, 2000, Electroosmotically induced hydraulic pumping on microchips: differential ion transport, Anal. Chem., 72, 2285, 10.1021/ac9912202 Prochaska, 2005, A membrane micropump electrostatically actuated across the working fluid, J. Micromech. Microeng., 15, 2309, 10.1088/0960-1317/15/12/013 Laser, 2004, A review of micropump, J. Micromech. Microeng., 14, R35, 10.1088/0960-1317/14/6/R01 Chen, 2002, A planar electroosmotic micropump, J. Micromech. Microeng., 11, 672, 10.1109/JMEMS.2002.805055 Gitlin, 2003, Pumping based on transverse electrokinetic effects, Appl. Phys. Lett., 83, 1486, 10.1063/1.1602560 Chen, 2005, An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electrosprays, Anal. Bioanal. Chem., 382, 817, 10.1007/s00216-005-3130-7 Wang, 2006, A new electro-osmotic pump based on silica monoliths, Sens. Actuat. B, 113, 500, 10.1016/j.snb.2005.03.102 Arulanandam, 2000, Liquid transport in rectangular microchannels by electroosmotic pumping, Colloids Surf. A, 161, 89, 10.1016/S0927-7757(99)00328-3 Zeng, 2001, Fabrication and characterization of electroosmotic micropumps, Sens. Actuat. B, 79, 107, 10.1016/S0925-4005(01)00855-3 Koch, 2000 Ramos, 2003, Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes, Phys. Rev. E, 67, 056302, 10.1103/PhysRevE.67.056302 Manz, 1994, Electroosmotic pumping and electrophoretic separation for miniaturized chemical analysis systems, J. Micromech. Microeng., 4, 257, 10.1088/0960-1317/4/4/010 Studer, 2002, Fabrication of microfluidic devices for AC electrokinetic fluid pumping, Microelectr. Eng., 61, 915, 10.1016/S0167-9317(02)00518-X Studer, 2004, An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control, Analyst, 129, 944, 10.1039/B408382M Yang, 2005, Enhancement of electrokinetically-driven flow mixing in microchannel with added side channels, Jpn. J. Appl. Phys., 44, 7634, 10.1143/JJAP.44.7634 Wang, 2005, Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis, J. Micromech. Microeng., 15, 2289, 10.1088/0960-1317/15/12/011 Dutta, 2002, Electroosmotic flow control in complex microgeometries, J. Microelectromech. Syst., 11, 36, 10.1109/84.982861 Patankar, 1998, Numerical simulation of electroosmotic flow, Anal. Chem., 70, 1870, 10.1021/ac970846u Maynes, 2003, Fully developed electro-osmotic heat transfer in microchannels, Int. J. Heat Mass Transfer, 46, 1359, 10.1016/S0017-9310(02)00423-4 Liechty, 2005, Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential, Int. J. Heat Mass Transfer, 48, 2360, 10.1016/j.ijheatmasstransfer.2005.01.019 Maynes, 2003, Fully-developed thermal transport in combined pressure and electro-osmotically driven flow in microchannels, J. Heat Transfer, 125, 889, 10.1115/1.1597624 Yang, 1998, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat Mass Transfer, 41, 4229, 10.1016/S0017-9310(98)00125-2 Zhao, 2002, Thermal effects on electro-osmotic pumping of liquids in microchannels, J. Micromech. Microeng., 12, 962, 10.1088/0960-1317/12/6/329 Stroock, 2000, Patterning electro-osmotic flow with patterned surface charge, Phys. Rev. Lett., 84, 3314, 10.1103/PhysRevLett.84.3314 Ajdari, 2000, Pumping liquids using asymmetric electrode arrays, Phys. Rev. E, 61, R45, 10.1103/PhysRevE.61.R45 Newman, 1991 Qian, 2002, A compact model for electroosmotic flows in microfluidic devices, J. Micromech. Microeng., 12, 625, 10.1088/0960-1317/12/5/318 Xuan, 2004, Thermal end effects on electroosmotic flow in a capillary, Int. J. Heat Mass Transfer, 47, 3145, 10.1016/j.ijheatmasstransfer.2004.02.023 Xuan, 2004, Electroosmotic flow with Joule heating effects, Lab Chip, 4, 230, 10.1039/b315036d Lee, 2005, Electrokinetic concentration gradient generation using a converging-diverging microchannel, Anal. Chim. Acta, 543, 99, 10.1016/j.aca.2005.04.041 Chang, 2005, Effects of Joule heating on the stability of time-modulated electro-osmotic flow, Phys. Fluids, 17, 074107, 10.1063/1.1954193 Dutta, 2001, Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects, Anal. Chem., 73, 1979, 10.1021/ac001182i Karniadakis, 2002 Gouy, 1910, Sur la constitution de la charge électrique à la surface d’un electrolyte, J. Phys., 9, 457 Probstein, 1994 Erickson, 2003, Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems, Lab. Chip, 3, 141, 10.1039/b306158b Liu, 1994, Raman spectroscopic measurement of spatial and temporal temperature gradients in operating electrophoresis capillaries, Anal. Chem., 66, 3744, 10.1021/ac00093a033 Burgi, 1991, Methods for calculating the internal temperature of capillary columns during capillary electrophoresis, J. Liq. Chromatogr., 14, 847, 10.1080/01483919108049291 Wang, 2004, A model for Joule heating-induced dispersion in microchip electrophoresis, Lab. Chip, 4, 625, 10.1039/b406752e Knox, 1994, Temperature effects in capillary electrophoresis. 2. Some theoretical calculations and predictions, Chromatographia, 38, 215, 10.1007/BF02290339 de Mello, 2006, Control and detection of chemical reactions in microfluidic systems, Nature, 442, 394, 10.1038/nature05062 Hu, 2006, Electrokinetically controlled real-time polymerase chain reaction in microchannel using Joule heating effect, Anal. Chim. Acta, 557, 146, 10.1016/j.aca.2005.10.021 Gorbachuk, 1989, Effect of temperature on the state of boundary and electric double layers, Colloid J. USSR, 50, 557 Shi, 2004, Thermal lattice Bhatnagar–Gross–Krook model for flows with viscous heat dissipation in the incompressible limit, Phys. Rev. E, 70, 066310, 10.1103/PhysRevE.70.066310 Guo, 2005, A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices, J. Chem. Phys., 122, 144907, 10.1063/1.1874813 Israelachvili, 1991 Wang, 2006, Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels, J. Colloid Interf. Sci., 296, 729, 10.1016/j.jcis.2005.09.042 Tang, 2006, Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method, J. Appl. Phys., 100, 094908, 10.1063/1.2369636 Qian, 1992, Lattice BGK models for Navier–Stokes equation, Europhys. Lett., 17, 479, 10.1209/0295-5075/17/6/001 Chapman, 1990 Guo, 2002, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14, 2007, 10.1063/1.1471914 Guo, 2002, Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 366, 10.1088/1009-1963/11/4/310