Manifolds with a given homology and fundamental group
Tài liệu tham khảo
[B-E]Bieri R., Eckmann B.—Finiteness properties of duality groups. Comment. Math. Helv.49 (1974) 74–83.
[B]Browder W.,Poincaré Spaces, Their normal fibrations and Surgery Inv. Math.17 (1972) 191–202.
[C-E]Cartan H., Eilenberg S.—Homological Algebra. Princeton University Press 1956.
[De]Dehn M. Über die Topologie des dreidimensional Raumes. Math. Ann.69 (1910) 127–168.
[D1]Dror E.,Acyclic Spaces, Topology11 (1972), 339–348.
[D2]-Dror E. Homology Spheres. Israeli J. of Math.15 (1973).
[D3]Dror E. A generalization of the Whitehead Theorem. Springer Lect. Notes 249, 13–22.
[D-V]Dyer E., Vasquea A. T.—Some small aspherical spaces. J. of the Australian Math. Soc. XVI (1973) 332–352.
[HO]Hausmann J.-Cl.—Groupes de sphères d'homologie entière Thesis, Univ. of Geneva, 1974.
[H1]Hausmann J.-Cl. Classification of homology spheres. Note Univ. of Geneva 1975.
[H2]-—Homological surgery. Ann. of Math.104 (1976), 573–584.
[H3]Hausmann J.-Cl. Homology sphere bordism and Quillen plus construction. Algebraic K-theory, Evanston 1976, Springer Lect. Notes 551, 170–181.
[H4]-—,Variétés avec une homologie et un groupe fondamental donné, C. R. Acad. Sc. Paris283 (1976), 241–244.
[H-V]Hausmann J.-Cl., Vogel P.—The plus construction and lifting maps from manifolds. To appear in Proc. AMS Summer Institute Stanford, 1976.
[Hi]Highman G. A finitely generated infinite simple group. J. London Math. Soc.26 (1951) 61–64.
[Hu]Hu S. T. Homotopy theory. Academic Press 1959.
[Ki]Kervaire M.,smooth homology spheres and their fundamental groups, Trans. AMS144 (1969) 67–72.
[K2]Kervaire M. Multiplicateurs de Shur et K-theorie Essays on topology and related topics Springer 1970, 212–225.
[K-M]Kervaire M., Milnor J.—Groups of homotopy spheres Ann. of Math.77 (1963) 504–537
[M]Milnor J. A unique decomposition theorem for 3-manifold. Amer. J. of Math.84 (1962) 1–7.
[N]Nakaoka M.,Decomposition Theorem for homology groups of symmetric groups, Ann. of Math.71 (1960) 16–42.
[P]Priddy S. Transfer, symmetric groups and stable homotopy theory. Algebraic K-theory I. Springer Lect. Notes 341, 244–259.
[T]Toda H. Composition methods in homotopy groups of spheres. Princeton Univ. Press 1962.
[V1]Vogel P. Cobordisme d'immersions. Ann. Ec. norm. Sup.7 (1974), 316–357.
[V2]Vogel P. Un théorème d'Hurewicz homologique to appear in Comment. Math. Helv.
[Wg]Wagoner J. Delooping classifying spaces in Algebraic K-theory. Topology II, (1972). 349–370.
[W]Wall C. T. C. Surgery on compact manifolds. Academic Press 1970.