Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Burkom H: Development, adaptation, and assessment of alerting algorithms for biosurveillance. Johns Hopkins APL Technical Digest. 2003, 24 (4): 335-342.
Burkom H, Murphy S, Shmueli G: Automated time series forecasting for biosurveillance. Stat in Med. 2007, 26 (22): 4202-4218. 10.1002/sim.2835.
Reis B, Mandl K: Time series modeling for syndromic surveillance. BMC Med Inform Decis Mak. 2003, 3: 2-10.1186/1472-6947-3-2.
Hutwagner L, Thompson W, Seeman G, Treadwell T: The bioterrorism preparedness and response Early Aberration Reporting System (EARS). J Urban Health. 2003, 80: i89-i96.
Wallenstein S, Naus J: Scan statistics for temporal surveillance for biologic terrorism. MMWR Morb Mortal Wkly Rep. 2004, 53 Suppl: 74-78.
Brillman J, Burr T, Forslund D, Joyce E, Picard R, Umland E: Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med Inform Decis Mak. 2005, 5 (4): 1-14.
Dafni U, Tsiodras S, Panagiotakos D, Gkolfinopoulou K, Kouvatseas G, Tsourti Z, Saroglou G: Algorithm for statistical detection of peaks – syndromic surveillance system for the Athens 2004 olympic games. MMWR Morb Mortal Wkly Rep. 2004, 53: 86-94.
Kleinman K, Abrams A, Kulldorff M, Platt R: A model-adjusted space-time scan statistic with an application to syndromic surveillance. Epidemiology and Infection. 2005, 133 (03): 409-419. 10.1017/S0950268804003528.
Wong W, Moore A, Cooper G, Wagner M: Rule-based anomaly pattern detection for detecting disease outbreaks. Proc. 18th Nat. Conf. on Artificial Intelligence. 1999, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press, 2002: 217-223.
Burr T, Graves T, Klamann R, Michalak S, Picard R, Hengartner N: Accounting for seasonal patterns in syndromic surveillance data for outbreak detection. BMC Med Inform Decis Mak. 2006, 6: 40-10.1186/1472-6947-6-40.
Stroup D, Wharton M, Kafadar K, Dean A: Evaluation of a method for detecting aberrations in public health surveillance data. Am J Epidemiol. 1993, 137 (3): 373-380.
Hutwagner L, Maloney E, Bean N, Slutsker L, Martin S: Using laboratory-based surveillance data for prevention: an algorithm for detecting salmonella outbreaks. Emerg Infect Dis. 1997, 3: 395-400.
Farrington C, Andrews N, Beale A, Catchpole M: A statistical algorithm for the early detection of outbreaks of infectious disease. J R Slat Soc Ser A Stat Soc. 1996, 159 (3): 547-563. 10.2307/2983331.
Stern L, Lightfoot D: Automated outbreak detection: a quantitative retrospective analysis. Epidemiol Infect. 1999, 122 (01): 103-110. 10.1017/S0950268898001939.
Simonsen L: The impact of influenza epidemics on mortality: introducing a severity index. American Journal of Public Health. 1997, 87 (12): 1944-1950. 10.2105/AJPH.87.12.1944.
Hutwagner L, Browne T, Seeman G, Fleischauer A: Comparing aberration detection methods with simulated data. Emerg Infect Dis. 2005, 11 (2): 314-316.
Grannis S, Wade M, Gibson J, Overhage J: The Indiana public health emergency surveillance system: Ongoing progress, early findings, and future directions. AMIA Annu Symp Proc. 2006, 304-308.
Olszewski R: Bayesian classification of triage diagnoses for the early detection of epidemics. Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference. 2003, Menlo Park, CA: AAAI, 412-7.
Cleveland R, Cleveland W, McRae J, Terpenning I: STL: A seasonal-trend decomposition procedure based on loess (with discussion). J Offic Stat. 1990, 6: 3-73.
Franz D, Jahrling P, Friedlander A, McClain D, Hoover D, Bryne W, Pavlin J, Christopher G, Eitzen E: Clinical recognition and management of patients exposed to biological warfare agents. JAMA. 1997, 278 (5): 399-411. 10.1001/jama.278.5.399.
R Development Core Team: R: A language and environment for statistical computing. 2005, R Foundation for Statistical Computing, Vienna, Austria, [ http://www.R-project.org ]
Cleveland W, Devlin S: Locally weighted regression: an approach to regression analysis by local fitting. JASA. 1988, 83 (403): 596-610.
Johnson NL, Kotz S, Kemp A: Univariate Discrete Distributions. 1992, New York: Wiley
Jackson M, Baer A, Painter I, Duchin J: A simulation study comparing aberration detection algorithms for syndromic surveillance. BMC Med Inform Decis Mak. 2007, 7: 6-6. 10.1186/1472-6947-7-6.
Mandl K, Reis B, Cassa C: Measuring outbreak-detection performance by using controlled feature set simulations. MMWR Morb Mortal Wkly Rep. 2004, 53: 130-6.
Sartwell P: The distribution of incubation periods of infectious disease. Am J Hyg. 1950, 51 (3): 310-318.