Estimating the Topography Before Volcanic Sector Collapses Using Tsunami Survey Data and Numerical Simulations

Yusuke Yamanaka1, Yuichiro Tanioka1
1Institute of Seismology and Volcanology, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aida, I. (1978). Reliability of a tsunami source model derived from fault parameters. Journal of Physics of the Earth, 26, 57–73.

Baba,T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015). Parallel implementation of dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami. Pure and Applied Geophysics, 172(12), 3455–3472.

de la Asunción, M., Castro, M. J., Mantas, J. M., & Ortega, S. (2016). Numerical simulation of tsunamis generated by landslides on multiple GPUs. Advances in Engineering Software, 99, 59–72.

Fritz, H. M., Hager, W. H., & Minor, H.-E. (2001). Lituya Bay case: Rockslide impact and wave run-up. Science of Tsunami Hazards, 19(1), 3–22.

Fritz, H. M., Hager, W. H., & Minor, H.-E. (2003a). Landslide generated impulse waves. 1. Instantaneous flow fields. Experiments in Fluids, 35, 505–519.

Fritz, H. M., Hager, W. H., & Minor, H.-E. (2003b). Landslide generated impulse waves. 2. Hydrodynamic impact craters. Experiments in Fluids, 35, 520–532.

Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130(6), 287–302.

Fritz, H. M., Mohammed, F., & Yoo, J. (2009). Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure and Applied Geophysics, 166(1), 153–175.

Goto, C., Ogawa, Y., & Imamura, F. (1997). Numerical method of tsunami simulation with leap-frog scheme (IUGG/IOC Time Project). IOC Manual, UNESCO, No. 35, Part 1.

Hatori, T. (1984). Reexamination of wave behavior of the Hokkaido-Oshima (the Japan Sea) Tsunami in 1741: Their comparison with the 1983 Nihonkai-Chubu Tsunami. Bulletin of Earthquake Research Institute University of Tokyo, 59, 115–125. (written in Japanese).

Heller, V., & Spinneken, J. (2013). Effects of block model parameters and slide model. Journal of Geophysical Research: Oceans, 118, 1489–1507.

Hirayama, H., & Hiraishi, T. (2004). Boussinesq modeling of wave breaking and run-up on a reef; 1D. Annual Journal of Coastal Engineering, JSCE, 51, 11–15. (written in Japanese).

Inoue, K. (1999). Shimabara–Shigatusaku Earthquake and topographic changes by Shimabara Catastrophe in 1792. Journal of the Japan Society of Erosion Control Engineering, 52(4), 45–54. (written in Japanese with English abstract).

Japan Cartographers Association (1993). Ino-zu, BUYODO (written in Japanese).

Iwabuchi, Y., Sugino, H., Imamura, F., Tsuji, Y., Matsuoka, Y., Imai, K., et al. (2012). Development of a tsunami trace database with reliability evaluation on Japan coasts. Journal of JSCE, Series B2 (Coastal Engineering), 68(2), 1326–1330. (written in Japanese with English abstract).

Johnson, R. W. (1987). Large-scale volcanic cone collapse: The 1888 slope failure of the Ritter volcano, and other examples from Papua New Guinea. Bulletin of Volcanology, 49(5), 669–679.

Kato, Y. (1997). Topography and geology of the sector collapse deposit of the Oshima–Oshima. JAMSTEC Journal of Deep Sea Research, 13, 659–667 (written in Japanese with English abstract).

Kawamata, K., Takaoka, K., Ban, K., Imamura, F., Yamaki, S., & Kobayashi, E. (2005). Model of tsunami generation by collapse of volcanic eruption: The 1741 Oshima–Oshima Tsunami. In K. Satake (Ed.), Tsunamis: Case Studies and Recent Developments (pp. 79–96). New York: Springer.

Kirby, J. T., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: A comparison of modeling approaches. Landslides, 13, 1421–1434.

Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026.

Lowder, G. G., & Carmichael, I. S. E. (1970). The volcanoes and caldera of Talasea. New Britain: Geology and Pettology, Geological Society of America Bulletin, 81(1), 17–38.

McFall, B.C. & Fritz, H.M. (2016). Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. In: Proc. R. Doc. A., 472(2188), The Royal Society, 20160052, 2016.

Miller, D. J. (1960). Giant waves in Lituya Bay, Alaska. U.S. Geological Survey Professional Paper, 354, 51–86.

Mohammed, F., & Fritz, H. M. (2012). Physical modeling of tsunami generated by three-dimensional deformable granular landslides. Journal of Geophysical Research, 117, C11015.

Nishimura, Y., & Miyaji, N. (1995). Tsunami deposits from the 1993 Southwest Hokkaido Earthquake and the 1640 Hokkaido Komagatake Eruption, Northern Japan, In: Tsunamis: 1992–1994. Birkhäuser Basel, pp. 719–733.

Nishimura, Y., & Miyaji, N. (1998). On height distribution of tsunami caused by the 1640 Eruption of Hokkaido-Komagatake, Northern Japan. Bulletin of the Volcanological Society of Japan, 43(4), 239–242. (written in Japanese).

Nishimura, Y. & Satake, K. (1993). Numerical computations of tsunamis from the past and future eruptions of Komagatake, Hokkaido, Japan. In Proceedings of the IUGG/IOC International Tsunami Symposium, pp. 573–583.

Ōta, K. (1969). Study on the collapses in the Mayu-yama: 1. On the mechanism of collapse, Bulletin of Shimabara Institution of Volcanology and Balneology, Faculty of Science, Kyushu University, 5, 6–35. (written in Japanese with English abstract).

Roverato, M., Capra, L., Sulpizio, R., & Norini, G. (2011). Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence. Journal of Volcanology and Geothermal Research, 207, 33–46.

Sælevik, G., Jensen, A., & Pedersen, G. (2009). Experimental investigation of impact generated tsunami; related to a potential rock slide. Western Norway, Journal of Coastal Engineering, 56, 897–906.

Saito, T., Inazu, D., Miyoshi, T., & Hino, R. (2014). Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. Journal of Geophysical Research: Oceans, 119(8), 5160–5180.

Sako, Y., Mori, T., Nakamura, H., Yusa, N., Ohno, R., Fukuda, M., et al. (2015). An estimation of the shape of landslide dam caused by deep-seated landslide. Journal of the Japan Society of Erosion Control Engineering, 68(1), 44–51. (written in Japanese with English abstract).

Sasahara, N. (2004). Numerical simulation of the tsunami caused by the sector collapse of Mt. Mayuyama, Shimabara Peninsula Kyushu in 1792. Report of Hydrographic and Oceanographic Researches, 40, 63–72. (written in Japanese with English abstract).

Satake, K. (2007). Volcanic origin of the 1741 Oshima–Oshima tsunami in the Japan sea. Earth, Planets and Space, 59, 381–390.

Satake, K., & Kato, Y. (2001). The 1741 Oshima–Oshima eruption: Extent and volume of submarine debris avalanche. Geophysical Research Letters, 28(3), 427–430.

Sato, S. (1996). Numerical simulation of 1993 Southwest Hokkaido Earthquake Tsunami around Okushiri Island. Journal of Waterway, Port, and Coastal Engineering, 122(5), 209–215.

Tinti, S., Bortolucci, E., & Romagnoli, C. (2000). Computer simulations of tsunamis due to sector collapse at Stromboli, Italy. Journal of Volcanology and Geothermal Research, 96, 103–128.

Tsuji, Y., & Hino, T. (1993). Damage and inundation height of the 1792 Shimabara Landslide Tsunami along the coast of Kumamoto Prefecture. Bulletin of Earthquake Research Institute University of Tokyo, 68, 91–176. (written in Japanese with English abstract).

Voight, B. (1981). Time scale for the first moments of the May 18 eruption. U.S. Geological Survey Professional Paper, 1250, 69–86.

Voight, B., Glicken, H., Janda, R., & Douglass, P. M. (1981). Catastrophic rock slide avalanche of May 18: In the 1980 Eruptions of Mount St. Helens, Washington. U.S. Geological Survey Professional Paper, Paper 1250, 347–377.

Voight, B., Janda, R. J., Glicken, H., & Douglass, P. M. (1983). Nature and mechanics of the Mount St Helens rockslide–avalanvhe of 18 May 1980. Géotechnique, 33, 243–273.

Ward, S. N., & Day, S. (2003). Lateral collapse and the tsunami of 1888. Geophysical Journal International, 154, 891–902.

Watts, P., Grilli, T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a boussinesq model and a fully nonlinear tsunami generation model. Natural Hazzards and Earth System Science, 3, 391–402.

Weiss, R., Fritz, H. M., & Wünnemann, K. (2009). Hybrid modeling of the mega-tsunami runup in Lityua Bay after half a century. Geophysical Research Letters, 36, L09602.

Xenakis, A. M., Lind, S. J., Stansby, P. K., & Rogers, B. D. (2017). Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proceedings of the Royal Society A, 473(2199), 20160674.

Xiao, L., Ward, S. N., & Wang, J. (2015). Tsunami squares approach to landslide-generated waves: Application to Gongjiafang landslide. Three Gorges Reservoir, China, Pure and Applied Geophysics, 172, 3639–3654.

Yanagisawa, H., Aoki, A., Sassa, K., & Inoue, K. (2014). Numerical simulation of 1792 Ariake-Kai Tsunami using land-slide tsunami model. Journal of JSCE Series B2 (Coastal Engineering), 70, 151–155 (written in Japanese with English abstract).

Yoshimoto, M., Furukawa, R., Nanayama, F., Nishimura, Y., Nishina, K., Uchida, Y., et al. (2003). Subaqueous distribution and volume estimation of the debris-avalanche deposit from the 1640 eruption of Hokkaido-Komagatake volcano, southwest Hokkaido, Japan. The Journal of the Geological Society of Japan, 109(10), 595–606. (written in Japanese with English abstract).

Zaniboni, F., Armigliato, A., & Tinti, S. (2016). A numerical investigation of the 1783 landslide-induced catastrophic tsunami in Scilla, Italy. Nature Hazards, 84, 455–470.

Zaniboni, F., Pagnoni, G., Tinti, S., Seta, M. D., Fredi, P., Marotta, E., et al. (2013). The potential failure of Monte Nuovo at Ischia Island (Southern Italy): numerical assessment of a likely induced tsunami and its effects on a densely inhabited area. Bulletin of Volcanology, 75(11), 763.

Zhou, H., Moore, C. W., Wei, Y., & Titov, V. V. (2011). A nested-grid Boussinesq-type approach to modeling dispersive propagation and runup of landslide-generated tsunamis. Natural Hazards and Earth System Sciences, 11, 2677–2697.