The triplet-triplet annihilation process of triplet to singlet excitons to fluorescence in polymer light-emitting diodes

Organic Electronics - Tập 62 - Trang 505-510 - 2018
Nidya Chitraningrum1, Ting-Yi Chu1, Ping-Tsung Huang2, Ten-Chin Wen3,4, Tzung-Fang Guo1,4
1Department of Photonics, National Cheng Kung University, 70101, Tainan, Taiwan, ROC
2Department of Chemistry, Fu Jen Catholic University, 24205, New Taipei City, Taiwan, ROC
3Department of Chemical Engineering, National Cheng Kung University, 70101, Tainan, Taiwan, ROC
4Advanced Optoelectronic Technology Center, National Cheng Kung University, 70101, Tainan, Taiwan, ROC

Tài liệu tham khảo

Tang, 1987, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913, 10.1063/1.98799 Pope, 1963, Electroluminescence in organic crystals, J. Chem. Phys., 38, 2042, 10.1063/1.1733929 Baldo, 1998, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151, 10.1038/25954 Adachi, 2000, High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials, Appl. Phys. Lett., 77, 904, 10.1063/1.1306639 Baldo, 1999, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., 75, 4, 10.1063/1.124258 Adachi, 2001, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048, 10.1063/1.1409582 Zhang, 2012, Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc., 134, 14706, 10.1021/ja306538w Chiang, 2013, Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater., 23, 739, 10.1002/adfm.201201750 Li, 2014, Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited states, Adv. Funct. Mater., 24, 1609, 10.1002/adfm.201301750 Obolda, 2016, Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs, Adv. Mater., 28, 4740, 10.1002/adma.201504601 Uoyama, 2012, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234, 10.1038/nature11687 Endo, 2011, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett., 98, 083302, 10.1063/1.3558906 Kondakov, 2009, Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes, J. Appl. Phys., 106, 124510, 10.1063/1.3273407 Tanaka, 2012, Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative, Chem. Commun. (J. Chem. Soc. Sect. D), 48, 11392, 10.1039/c2cc36237f Yang, 2017, Recent advances in organic thermally activated delayed fluorescence materials, Chem. Soc. Rev., 46, 915, 10.1039/C6CS00368K Dias, 2013, Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer LED emitters, Adv. Mater., 25, 3707, 10.1002/adma.201300753 Endo, 2009, Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes – a novel mechanism for electroluminescence, Adv. Mater., 21, 4802, 10.1002/adma.200900983 Sternlicht, 1963, Triplet-triplet annihilation and delayed fluorescence in molecular aggregates, J. Chem. Phys., 3, 1326, 10.1063/1.1733853 Chou, 2014, Efficient delayed fluorescence via triplet-triplet annihilation for deep-blue electroluminescence, Chem. Commun. (J. Chem. Soc. Sect. D), 50, 6869, 10.1039/C4CC01851F Mamada, 2017, Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system, ACS Cent. Sci., 3, 769, 10.1021/acscentsci.7b00183 Dias, 2017, Photophysics of thermally activated delayed fluorescence molecules, Methods Appl. Fluoresc., 5, 012001, 10.1088/2050-6120/aa537e Chen, 2015, Understanding the control of singlet-triplet splitting for organic exciton manipulating: a combined theoretical and experimental approach, Sci. Rep., 5, 10923, 10.1038/srep10923 Wilkinson, 2005, Evidence for charge-Carrier mediated magnetic-field modulation of electroluminescence in organic light-emitting diodes, Appl. Phys. Lett., 86, 111109, 10.1063/1.1883322 Johnson, 1967, Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals, Phys. Rev. Lett., 19, 285, 10.1103/PhysRevLett.19.285 Chen, 2011, A possible mechanism to tune magnetoelectroluminescence in organic light-emitting diodes through adjusting the triplet exciton density, Appl. Phys. Lett., 99, 143305, 10.1063/1.3644147 Chen, 2016, Determining the origin of half-bandgap-voltage electroluminescence in bifunctional rubrene/C60 devices, Sci. Rep., 6, 25331, 10.1038/srep25331 Peng, 2013, Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements, Adv. Opt. Mater, 1, 362, 10.1002/adom.201300028 Peng, 2011, Investigation of the magnetic field effects on electron mobility in tri-(8-hydroxyquinoline)-aluminium based light-emitting devices, Appl. Phys. Lett., 99, 033509, 10.1063/1.3615305 Jankus, 2013, Energy upconversion via triplet fusion in super yellow PPV films doped with palladium tetraphenyltetrabenzoporphyrin: a comprehensive investigation of exciton dynamics, Adv. Funct. Mater., 23, 384, 10.1002/adfm.201201284 Desai, 2007, Magnetoresistance and efficiency measurements of Alq3-based OLEDs, Phys. Rev. B, 75, 094423, 10.1103/PhysRevB.75.094423 Xu, 2006, Dissociation processes of singlet and triplet excitons in organic photovoltaic cells, Appl. Phys. Lett., 89, 131116, 10.1063/1.2357584 Lee, 2011, Magnetoconductance responses in organic charge-transfer-complex molecules, Appl. Phys. Lett., 99, 073307, 10.1063/1.3627170 Hu, 2007, Tuning magnetoresistance between positive and negative values in organic semiconductors, Nat. Mater., 6, 985, 10.1038/nmat2034 Davis, 2004, Large magnetic field effect in organic light emitting diodes based on tris(8-hydroxyquinoline aluminium) (Alq3)/N,N’-Di(naphthalen-1-yl)-N,N’ diphenyl-benzidine (NPB) bilayers, J. Vac. Sci. Technol. A, 22, 1885, 10.1116/1.1759347 Mikhnenko, 2015, Exciton diffusion in organic semiconductors, Energy Environ. Sci., 8, 1867, 10.1039/C5EE00925A Khan, 2017, Enhanced fluorescence with nanosecond dynamics in the solid state of metal ion complexes of alkoxy salophens, Phys. Chem. Chem. Phys., 19, 30120, 10.1039/C7CP05429G Yamada, 2009, Temperature dependence of photoluminescence spectra of nanodoped and electron-doped SrTiO3: crossover from Auger recombination to single-carrier trapping, Phys. Rev. Lett., 102, 247401, 10.1103/PhysRevLett.102.247401 Schömig, 2004, Probing individual localization centers in an InGaN/GaN quantum well, Phys. Rev. Lett., 92, 106802, 10.1103/PhysRevLett.92.106802 Szendrei, 2012, Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells, Adv. Funct. Mater., 22, 1598, 10.1002/adfm.201102320 Furukawa, 2015, Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs, Sci. Rep., 5, 8429, 10.1038/srep08429 Hu, 2009, Magnetic-field effects in organic semiconducting materials and devices, Adv. Mater., 21, 1500, 10.1002/adma.200802386 Chen, 2016, Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplet-triplet annihilation?, Adv. Opt. Mater, 2, 142, 10.1002/adom.201300422 Liu, 2009, Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures, J. Appl. Phys., 105, 093719, 10.1063/1.3125507