The triplet-triplet annihilation process of triplet to singlet excitons to fluorescence in polymer light-emitting diodes
Tài liệu tham khảo
Tang, 1987, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913, 10.1063/1.98799
Pope, 1963, Electroluminescence in organic crystals, J. Chem. Phys., 38, 2042, 10.1063/1.1733929
Baldo, 1998, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151, 10.1038/25954
Adachi, 2000, High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials, Appl. Phys. Lett., 77, 904, 10.1063/1.1306639
Baldo, 1999, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., 75, 4, 10.1063/1.124258
Adachi, 2001, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, J. Appl. Phys., 90, 5048, 10.1063/1.1409582
Zhang, 2012, Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc., 134, 14706, 10.1021/ja306538w
Chiang, 2013, Ultrahigh efficiency fluorescent single and bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater., 23, 739, 10.1002/adfm.201201750
Li, 2014, Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited states, Adv. Funct. Mater., 24, 1609, 10.1002/adfm.201301750
Obolda, 2016, Triplet-polaron-interaction-induced upconversion from triplet to singlet: a possible way to obtain highly efficient OLEDs, Adv. Mater., 28, 4740, 10.1002/adma.201504601
Uoyama, 2012, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234, 10.1038/nature11687
Endo, 2011, Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett., 98, 083302, 10.1063/1.3558906
Kondakov, 2009, Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes, J. Appl. Phys., 106, 124510, 10.1063/1.3273407
Tanaka, 2012, Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative, Chem. Commun. (J. Chem. Soc. Sect. D), 48, 11392, 10.1039/c2cc36237f
Yang, 2017, Recent advances in organic thermally activated delayed fluorescence materials, Chem. Soc. Rev., 46, 915, 10.1039/C6CS00368K
Dias, 2013, Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer LED emitters, Adv. Mater., 25, 3707, 10.1002/adma.201300753
Endo, 2009, Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes – a novel mechanism for electroluminescence, Adv. Mater., 21, 4802, 10.1002/adma.200900983
Sternlicht, 1963, Triplet-triplet annihilation and delayed fluorescence in molecular aggregates, J. Chem. Phys., 3, 1326, 10.1063/1.1733853
Chou, 2014, Efficient delayed fluorescence via triplet-triplet annihilation for deep-blue electroluminescence, Chem. Commun. (J. Chem. Soc. Sect. D), 50, 6869, 10.1039/C4CC01851F
Mamada, 2017, Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system, ACS Cent. Sci., 3, 769, 10.1021/acscentsci.7b00183
Dias, 2017, Photophysics of thermally activated delayed fluorescence molecules, Methods Appl. Fluoresc., 5, 012001, 10.1088/2050-6120/aa537e
Chen, 2015, Understanding the control of singlet-triplet splitting for organic exciton manipulating: a combined theoretical and experimental approach, Sci. Rep., 5, 10923, 10.1038/srep10923
Wilkinson, 2005, Evidence for charge-Carrier mediated magnetic-field modulation of electroluminescence in organic light-emitting diodes, Appl. Phys. Lett., 86, 111109, 10.1063/1.1883322
Johnson, 1967, Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals, Phys. Rev. Lett., 19, 285, 10.1103/PhysRevLett.19.285
Chen, 2011, A possible mechanism to tune magnetoelectroluminescence in organic light-emitting diodes through adjusting the triplet exciton density, Appl. Phys. Lett., 99, 143305, 10.1063/1.3644147
Chen, 2016, Determining the origin of half-bandgap-voltage electroluminescence in bifunctional rubrene/C60 devices, Sci. Rep., 6, 25331, 10.1038/srep25331
Peng, 2013, Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements, Adv. Opt. Mater, 1, 362, 10.1002/adom.201300028
Peng, 2011, Investigation of the magnetic field effects on electron mobility in tri-(8-hydroxyquinoline)-aluminium based light-emitting devices, Appl. Phys. Lett., 99, 033509, 10.1063/1.3615305
Jankus, 2013, Energy upconversion via triplet fusion in super yellow PPV films doped with palladium tetraphenyltetrabenzoporphyrin: a comprehensive investigation of exciton dynamics, Adv. Funct. Mater., 23, 384, 10.1002/adfm.201201284
Desai, 2007, Magnetoresistance and efficiency measurements of Alq3-based OLEDs, Phys. Rev. B, 75, 094423, 10.1103/PhysRevB.75.094423
Xu, 2006, Dissociation processes of singlet and triplet excitons in organic photovoltaic cells, Appl. Phys. Lett., 89, 131116, 10.1063/1.2357584
Lee, 2011, Magnetoconductance responses in organic charge-transfer-complex molecules, Appl. Phys. Lett., 99, 073307, 10.1063/1.3627170
Hu, 2007, Tuning magnetoresistance between positive and negative values in organic semiconductors, Nat. Mater., 6, 985, 10.1038/nmat2034
Davis, 2004, Large magnetic field effect in organic light emitting diodes based on tris(8-hydroxyquinoline aluminium) (Alq3)/N,N’-Di(naphthalen-1-yl)-N,N’ diphenyl-benzidine (NPB) bilayers, J. Vac. Sci. Technol. A, 22, 1885, 10.1116/1.1759347
Mikhnenko, 2015, Exciton diffusion in organic semiconductors, Energy Environ. Sci., 8, 1867, 10.1039/C5EE00925A
Khan, 2017, Enhanced fluorescence with nanosecond dynamics in the solid state of metal ion complexes of alkoxy salophens, Phys. Chem. Chem. Phys., 19, 30120, 10.1039/C7CP05429G
Yamada, 2009, Temperature dependence of photoluminescence spectra of nanodoped and electron-doped SrTiO3: crossover from Auger recombination to single-carrier trapping, Phys. Rev. Lett., 102, 247401, 10.1103/PhysRevLett.102.247401
Schömig, 2004, Probing individual localization centers in an InGaN/GaN quantum well, Phys. Rev. Lett., 92, 106802, 10.1103/PhysRevLett.92.106802
Szendrei, 2012, Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells, Adv. Funct. Mater., 22, 1598, 10.1002/adfm.201102320
Furukawa, 2015, Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs, Sci. Rep., 5, 8429, 10.1038/srep08429
Hu, 2009, Magnetic-field effects in organic semiconducting materials and devices, Adv. Mater., 21, 1500, 10.1002/adma.200802386
Chen, 2016, Magneto-electroluminescence as a tool to discern the origin of delayed fluorescence: reverse intersystem crossing or triplet-triplet annihilation?, Adv. Opt. Mater, 2, 142, 10.1002/adom.201300422
Liu, 2009, Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures, J. Appl. Phys., 105, 093719, 10.1063/1.3125507