Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints

Copernicus GmbH - Tập 9 Số 12 - Trang 4011-4021
Jianping Huang1, Qiang Fu2,1, Jing Su1, Qiang Tang1, Patrick Minnis3, Yongxiang Hu3, Y. Yi4, Qingzhan Zhao5
1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
2Department of Atmosphere Science, University of Washington, USA
3NASA Langley Research Center, Hampton, VA 23666, USA
4Science Systems and Applications Inc., Hampton, VA 23666, USA
5Gansu Meteorological Bureau, Lanzhou, 73000 China

Tóm tắt

Abstract. The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in Northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties' spectral dependencies. We find that the dust aerosols have a significant impact on the radiative energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere (daily mean) by up to 1, 2, and 3 K day−1, respectively. The maximum daily mean radiative heating rate reaches 5.5 K day−1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m−2, respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiative cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.

Từ khóa


Tài liệu tham khảo

Ackerman A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, 2000.

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.

Carlson, T. N., and Benjamin, S. G.: Radiative heating rates for Saharan dust, J. Atmos. Sci., 37, 193–213, 1980.

Claquin, T., Schulz, M., Balkanski, Y. J., and Boucher, O.: Uncertainties in assessing radiative forcing by mineral dust, Tellus B, 50, 491–505, 1998.

Claquin, T., Schulz, M., and Balkanski, Y.: Modeling the mineralogy of atmospheric dust, J. Geophys. Res., 104(D18), 22243–22256, 1999.

Dubovik, O., Holben, B., Eck, T. F., et al.: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, 2002.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.

Fu, Q., and Liou, K.-N.: On the correlated k-distribution method for radiative transfer in nonhomogenous atmospheres, J. Atmos. Sci., 49, 2139–2156, 1992.

Fu, Q., and Liou, K. N.: Parameterization of the radiative properties pf cirrus clouds, J. Atmos. Sci., 50, 2008–2025, 1993.

Hess, M. P., Koepke, P., and Schultz, I.: Optical properties of aerosol and clouds: The software package OPAC, B. Am. Meteor. Soc., 79, 831–844, 1998.

Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and Ayers, J. K.: Satellite-based assessment of possible dust aerosols semidirect effect on cloud water path over East Asia, Geophys. Res. Lett., 33, L19802, https://doi.org/10.1029/2006GL026561, 2006.

Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938, 2007.

Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., and Ayers, J.: Long-range transport and vertical structure of Asian dust from CALIPSO an surface measurements during PACDEX, J. Geophys. Res., 113, D23212, https://doi.org/10.1029/2008JD010620, 2008.

Hu, Y., Liu, Z., Winker, D., Vaughan, M., Noel, V., Bissonnette, L., Roy, G., and McGill, M.: A simple relation between depolarization and multiple scattering of water clouds and its application for lidar calibration, Opt. Lett., 31, 1809–1811, 2006.

Hu, Y., Vaughan, M., Liu, Z., Lin, B., et al.: The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory, Opt. Express, 15, 5327–5332, 2007.

Iwasaka, Y., Minoura, H., and Nagaya, K.: The transport and spatial scale of Asian dust-storm clouds: A case study of the dust-storm event of April 1979, Tellus B, 35, 189–196, 1983.

Kato, S., Charlock, T. P., and Rose, F. G.: Paper Computation of Domain-Averaged Irradiance Using Satellite-Derived Cloud Properties, J. Atmos. Ocean. Technol., 22b, 146–164, 2005.

Koren, I., Kaufman, Y. J., Remer, L. A., and Marins, J. V.: Measurement of the Effect of amazon smoke on inhibition of cloud formation, Science, 303, 1342–1345, 2004.

Kratz, D. P. and Rose, F. G.: Accounting for molecular absorption within the spectral range of the CERES window channel, J. Quant. Spectrosc. Radiat. T., 48, 83, 1999.

Kruger, O. and Graßl, H.: Albedo reduction by absorbing aerosols over China, Geophys. Res. Lett., 31, L02108, https://doi.org/10.1029/2003GL019111, 2004.

Liao, H. and Seinfeild, J. H.: Radiative forcing by mineral dust aerosols: Sensitivity to key variables, J. Geophys. Res., 103(D24), 31637–31645, 1998.

Liu, Z., Vaughan, M. A., Winker, D. M., Hostetler, C. A., Poole, L. R., Hlavka, D., Hart, W., and McGill, M.: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data, J. Geophys. Res., 109, D15202, https://doi.org/10.1029/2004JD004732, 2004.

Liu, Z., Liu, D., Huang, J., Vaughan, M., Uno, I., Sugimoto, N., Kittaka, C., Trepte, C., Wang, Z., Hostetler, C., and Winker, D.: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations, Atmos. Chem. Phys., 8, 5045–5060, 2008.

Meloni, D., Sarra, A. D., Iotio, T. D., and Fiocco, G.: (), Influence of the vertical profile of Saharan dust on the visible direct radiative forcing, J. Quant. Spectrosc. Radiat. T., 93, 497–413, 2005.

Mikami, M., Shi, G. Y., Uno, I., et al.: Aeolian dust experiment on climate impact: an overview of Japan-China Joint Project ADEC, Global Planet Change, 52, 142–172, https://doi.org/10.1016/j.gloplacha.2006.03.001, 2006.

Minnis, P., Trepte, Q. Z., Sun-Mack, S., Chen, Y., et al.: Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data, IEEE Trans. Geosci. Remote Sens., 46, 3857–3884, 2008.

Murayama, T., Sugimoto, N., Uno, I., et al.: Ground-based network observation of Asian dust events of April 1998 in east Asia, J. Geophys. Res., 106(D16), 18345–18360, 2001.

Omar, A., Winker, D., and Won, J.: Aerosol models for the CALIPSO lidar inversion algorithms, Laser Radar Technology for Remote Sensing, Proc. SPIE, 5240, 153–164, 2004.

Rose, F. G. and Charlock, T. P.: New Fu-Liou Code Tested with ARM Raman Lidar and CERES in pre-CALIPSO Exercise, Extended abstract for 11th Conference on Atmospheric Radiation (AMS), Ogden, Utah, USA, 3–7 June 2002, 2002.

Satheesh, S. K., Vinoj, V., and Moorthy, K. K.: Vertical distribution of aerosols over an urban continental site in India inferred using a micro pulse lidar, Geophys. Res. Lett., 33, L20816, https://doi.org/10.1029/2006GL027729, 2006.

Shi, G. Y., Wang, H., Wang, B., et al.: Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition, J. Meteorol. Soc. Japan, 83A, 333–346, 2005.

Slingo, A., Ackerman, T. P., Allan, R. P., et al.: Observations of the impact of a major Saharan dust storm on theatmospheric radiation balance, Geophys. Res. Lett., 33, L24817 https://doi.org/10.1029/2006GL027869, 2006.

Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res., 104, 9423–9444, 1999.

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., et al.: The CloudSat Mission and the A-Train: A New Dimension of Space-Based Observations of Clouds and Precipitation, B. Am. Meteor. Soc., 83, 1771–1790, 2002.

Sun, J., Zhang, M., and Liu, T.: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate, J. Geophys. Res., 106, 10325–10333, 2001.

Tegen, I., Lacis, A. A., and Fung, I.: The infl uence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419–421, https://doi.org/10.1038/38041900, 1996.

Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E.: Relative importance of climate and land use in determining present and future global soil dust emission, Geophys. Res. Lett., 31, L05105, https://doi.org/10.1029/2003GL019216, 2004.

Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.

Uno, I., Yumimoto, K., Shimizu, A., Hara, Y., Sugimoto, N., Wang, Z., Liu, Z., and Winker D. M.: 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model, Geophys. Res. Lett., 35, L06803, https://doi.org/10.1029/2007GL032329, 2008.

Uno, I., Amano, H., Emori, S., Kinoshita, K., Matsui, I., and Sugimoto, N.: Trans- Pacific yellow sand transport observed in April 1998: A numerical simulation, J. Geophys. Res., 106(D16), 18331–18344, https://doi.org/10.1029/2000JD900748, 2001.

Wang, S., Wang, J., Zhou, Z., and Shang, K.: Regional characteristics of three kinds of dust storm events in China, Atmos. Environ., 39, 509–520, 2005.

Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., et al.: Clouds and the Earth's Radiant Energy System (CERES): an earthobserving system experiment, B. Am. Meteor. Soc., 77, 853–868, 1996.

Winker, D., Vaughan, M., and Hunt, W.: The CALIPSO mission and initial results from CALIOP, Proc. SPIE, 6409, 640902, https://doi.org/10.1117/12.698003, 2006.

Zhang, J. L. and Christopher, S. A.: Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, CERES observtions on Terra, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL018479, 2003.

Zhang, X. Y., Arimoto, R., and An, Z. S.: Dust emission from Chinese desert sources linked to variations in atmospheric circulation, J. Geophys. Res., 102(D23), 28041–28044, 1997.

Zhu, A., Ramanathan, V., Li, F., and Kim, D.: Dust plumes over the Pacific, Indian, and Atlantic oceans: Climatology and radiative impact, J. Geophys. Res., 112, D16208, https://doi.org/10.1029/2007JD008427, 2007.