The effects of single high-dose or daily low-dosage oral colecalciferol treatment on vitamin D levels and muscle strength in postmenopausal women

BMC Endocrine Disorders - Tập 18 - Trang 1-8 - 2018
Mahmut Apaydin1, Asli Gencay Can2, Muhammed Kizilgul1, Selvihan Beysel1, Seyfullah Kan1, Mustafa Caliskan1, Taner Demirci1, Ozgur Ozcelik1, Mustafa Ozbek1, Erman Cakal1
1Department of Endocrinology and Metabolism, Diskapi Training and Research Hospital, Ankara, Turkey
2Department of Physical Medicine and Rehabilitation, Diskapi Training and Research Hospital, Ankara, Turkey

Tóm tắt

Vitamin D deficiency is a common health problem. Vitamin D supplements are used to improve vitamin D status; however, there are contradictory data related to what doses to give and how often they should be given. Many studies have investigated the effects of vitamin D supplementation on muscle strength, but the results remain controversial. We aimed to compare the effects and safety of single high-dose with daily low-dose oral colecalciferol on 25(OH)D levels and muscle strength in postmenopausal women with vitamin D deficiency or insufficiency. Sixty healthy postmenopausal women who had serum vitamin D levels < 20 ng/mL (50 nmol/L) were enrolled in the study. Group 1 (n = 32) was given daily oral dosages of 800 IU vitamin D3, and group 2 (n = 28) was given a single oral dose of 300,000 IU vitamin D3. Serum vitamin D levels and muscle strengths were measured at the beginning, 4th, and 12th week. Muscle strength tests were performed at 60° using a Biodex system 3 isokinetic dynamometer. Pretreatment vitamin D levels did not differ between the two groups (10.2 ± 4.4 ng/mL (25,4 ± 10,9 nmol/L); 9.7 ± 4.4 ng/mL (24,2 ± 10,9 nmol/L), p > 0.05). A significant increase in vitamin D levels was observed in both groups at 4 and 12 weeks after vitamin D3 treatment. The increase in the single-dose group was significantly higher than the daily low-dosage group at the 4th week (35.9 ± 9.6 ng/mL (89,6 ± 23,9 nmol/L), 16.9 ± 5.8 ng/mL (42,1 ± 14,4 nmol/L), p = 0.01). The increase in the single-dose group was significantly higher than in the daily low dosage group at the 12th week (23.4 ± 4.7 ng/mL (58,4 ± 11,7 nmol/L), 19.8 ± 7.2 ng/mL (49,4 ± 17,9 nmol/L), p = 0.049). The quadriceps muscle strength score increased significantly in the daily group at the 4th week (p = 0.038). The hamstring muscle strength score increased significantly in the daily group at the 12th week (p = 0.037). Although daily administration routes are more effective in improving muscle strength, a single administration is more effective in increasing vitamin D levels. ISRCTN14226530 (04.07.2018), Name of the registry: ISRCTN registry, The study was retrospectively registered.

Tài liệu tham khảo

Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9(12):941–55. Bordelon P, Ghetu MV, Langan RC. Recognition and management of vitamin D deficiency. Am Fam Physician. 2009;80(8):841–6. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87(4):1080S–6S. Rossini M, et al. Dose-dependent short-term effects of single high doses of oral vitamin D(3) on bone turnover markers. Calcif Tissue Int. 2012;91(6):365–9. Holick MF, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30. Holick MF. Optimal vitamin D status for the prevention and treatment of osteoporosis. Drugs Aging. 2007;24(12):1017–29. Bischoff, H.A., et al., In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J, 2001. 33(1): p. 19–24. Marcinkowska E. A run for a membrane vitamin D receptor. Biol Signals Recept. 2001;10(6):341–9. Rinaldi I, et al. Correlation between serum vitamin D (25(OH)D) concentration and quadriceps femoris muscle strength in Indonesian elderly women living in three nursing homes. Acta Med Indones. 2007;39(3):107–11. Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Asp Med. 2008;29(6):407–14. Gallagher JC, et al. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. Ann Intern Med. 2012;156(6):425–37. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (colecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ. 2003;326(7387):469. Sanfelix-Genoves J, et al. Determinant factors of osteoporosis patients' reported therapeutic adherence to calcium and/or vitamin D supplements: a cross-sectional, observational study of postmenopausal women. Drugs Aging. 2009;26(10):861–9. Diez A, et al. Observational study of treatment compliance in women initiating antiresorptive therapy with or without calcium and vitamin D supplements in Spain. Menopause. 2012;19(1):89–95. Diamond TH, et al. Annual intramuscular injection of a megadose of colecalciferol for treatment of vitamin D deficiency: efficacy and safety data. Med J Aust. 2005;183(1):10–2. Dhesi JK, et al. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004;33(6):589–95. Leventis P, Kiely PD. The tolerability and biochemical effects of high-dose bolus vitamin D2 and D3 supplementation in patients with vitamin D insufficiency. Scand J Rheumatol. 2009;38(2):149–53. Ilahi M, Armas LA, Heaney RP. Pharmacokinetics of a single, large dose of colecalciferol. Am J Clin Nutr. 2008;87(3):688–91. Moreira-Pfrimer LD, et al. Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab. 2009;54(4):291–300. Kearns MD, Alvarez JA, Tangpricha V. Large, single-dose, oral vitamin d supplementation in adult populations: a systematic review. Endocr Pract. 2014;20(4):341–51. Janssen HC, Samson MM, Verhaar HJ. Vitamin D deficiency, muscle function, and falls in elderly people. Am J Clin Nutr. 2002;75(4):611–5. Schacht E, Ringe JD. Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass. Rheumatol Int. 2012;32(1):207–15. Kenny AM, et al. Effects of vitamin D supplementation on strength, physical function, and health perception in older, community-dwelling men. J Am Geriatr Soc. 2003;51(12):1762–7. Grady, D., et al., 1,25-Dihydroxyvitamin D3 and muscle strength in the elderly: a randomized controlled trial. J Clin Endocrinol Metab, 1991. 73(5): p. 1111–7. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300. Stockton KA, et al. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011;22(3):859–71. Kearns MD, et al. The effect of a single, large bolus of vitamin D in healthy adults over the winter and following year: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr. 2015;69(2):193–7. Rejnmark L. Effects of vitamin D on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis. 2011;2:25–37. Marantes I, et al. Is vitamin D a determinant of muscle mass and strength? J Bone Miner Res. 2011;26(12):2860–71. Janssen HC, Samson MM, Verhaar HJ. Muscle strength and mobility in vitamin D-insufficient female geriatric patients: a randomized controlled trial on vitamin D and calcium supplementation. Aging Clin Exp Res. 2010;22(1):78–84. Pfeifer M, et al. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos Int. 2009;20(2):315–22. Bunout D, et al. Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Exp Gerontol. 2006;41(8):746–52. Bischoff HA, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003;18(2):343–51. Latham NK, et al. A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS). J Am Geriatr Soc. 2003;51(3):291–9. Brunner RL, et al. Calcium, vitamin D supplementation, and physical function in the Women’s Health Initiative. J Am Diet Assoc. 2008;108(9):1472–9. El-Hajj Fuleihan G, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405–12. Beaudart C, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–45. Kalyani RR, et al. Vitamin D treatment for the prevention of falls in older adults: systematic review and meta-analysis. J Am Geriatr Soc. 2010;58(7):1299–310. Murad MH, et al. Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(10):2997–3006. Scott D, et al. Investigating the predictive ability of gait speed and quadriceps strength for incident falls in community-dwelling older women at high risk of fracture. Arch Gerontol Geriatr. 2014;58(3):308–13. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22.