Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii

Parasites and Vectors - Tập 12 - Trang 1-10 - 2019
Ayaz Anwar1, Arshid Numan2, Ruqaiyyah Siddiqui1, Mohammad Khalid2, Naveed Ahmed Khan1
1Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya, Malaysia
2Graphene and Advanced 2D Materials Research Group, School of Science and Technology, Sunway University, Subang Jaya, Malaysia

Tóm tắt

Species of Acanthamoeba are facultative pathogens which can cause sight threatening Acanthamoeba keratitis and a rare but deadly brain infection, granulomatous amoebic encephalitis. Due to conversion of Acanthamoeba trophozoites to resistant cyst stage, most drugs are found to be ineffective at preventing recurrence of infection. This study was designed to test the antiacanthamoebic effects of different cobalt nanoparticles (CoNPs) against trophozoites and cysts, as well as parasite-mediated host cell cytotoxicity. Three different varieties of CoNPs were synthesized by utilizing hydrothermal and ultrasonication methods and were thoroughly characterized by X-ray diffraction and field emission scanning electron microscopy. Amoebicidal, encystation, excystation, and host cell cytopathogenicity assays were conducted to study the antiacanthamoebic effects of CoNPs. The results of the antimicrobial evaluation revealed that cobalt phosphate Co3(PO4)2 hexagonal microflakes, and 100 nm large cobalt hydroxide (Co(OH)2) nanoflakes showed potent amoebicidal activity at 100 and 10 µg/ml against Acanthamoeba castellanii as compared to granular cobalt oxide (Co3O4) of size 35–40 nm. Furthermore, encystation and excystation assays also showed consistent inhibition at 100 µg/ml. CoNPs also inhibited amoebae-mediated host cell cytotoxicity as determined by lactate dehydrogenase release without causing significant damage to human cells when treated alone. To our knowledge, these findings determined, for the first time, the effects of composition, size and morphology of CoNPs against A. castellanii. Co3(PO4)2 hexagonal microflakes showed the most promising antiamoebic effects as compared to Co(OH)2 nanoflakes and granular Co3O4. The results reported in the present study hold potential for the development of antiamoebic nanomedicine.

Tài liệu tham khảo

Khan NA. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev. 2006;30:564–95. Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev. 2003;16:273–307. Anwar A, Khan NA, Siddiqui R. Combating Acanthamoeba spp. cysts: what are the options? Parasites Vectors. 2018;11:26. Siddiqui R, Aqeel Y, Khan NA. The development of drugs against Acanthamoeba infections. Antimicrob Agents Chemother. 2016;60:6441–50. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M. A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab. 2017;18:120–8. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941. Soliman GM. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges. Int J Pharm. 2017;523:15–32. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64. Kalwar K, Shan D. Antimicrobial effect of silver nanoparticles (AgNPs) and their mechanism—a mini review. Micro Nano Lett. 2018;13:277–80. Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X. Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Am Chem Soc. 2010;132:12349–56. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511. Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine. Antimicrob Agents Chemother. 2016;60:1283–8. Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol Res. 2018;117:265–71. Anwar A, Siddiqui R, Shah MR, Khan NA. Gold nanoparticle conjugated cinnamic acid exhibit antiacanthamoebic and antibacterial properties. Antimicrob Agents Chemother. 2018;62:e00630-18. Anwar A, Rajendran K, Siddiqui R, Raza Shah M, Khan NA. Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae. ACS Chem Neurosci. 2019;10:658–66. Padzik M, Hendiger EB, Chomicz L, Grodzik M, Szmidt M, Grobelny J, et al. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol Res. 2018;117:3519–25. Gomart G, Denis J, Bourcier T, Dory A, Abou-Bacar A, Candolfi E, et al. In vitro amoebicidal activity of Titanium dioxide/UV-A combination against Acanthamoeba. Invest Ophthalmol Vis Sci. 2018;59:4567–71. Imran M, Muazzam AG, Habib A, Matin A. Synthesis, characterization and amoebicidal potential of locally synthesized TiO2 nanoparticles against pathogenic Acanthamoeba trophozoites in vitro. J Photochem Photobiol B. 2016;159:125–32. Niyyati M, Sasani R, Mohebali M, Ghazikhansari M, Kargar F, Hajialilo E, et al. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions. Iran J Parasitol. 2018;13:180. Prescott LM, Kubovec MK, Tryggestad D. The effects of pesticides, polychlorinated biphenyls and metals on the growth and reproduction of Acanthamoeba castellanii. Bull Environ Contam Toxicol. 1977;18:29–34. Czarnek K, Terpiłowska S, Siwicki AK. Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol. 2015;40:236. Lavicoli I, Falcone G, Alessandrelli M, Cresti R, De Santis V, Salvatori S, et al. The release of metals from metal-on-metal surface arthroplasty of the hip. J Trace Elem Med Biol. 2006;20:25–31. Simonsen LO, Harbak H, Bennekou P. Cobalt metabolism and toxicology—a brief update. Sci Total Environ. 2012;432:210–5. Ansari SM, Bhor RD, Pai KR, Sen D, Mazumder S, Ghosh K, et al. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl Surf Sci. 2017;414:171–87. Ashour AH, El-Batal AI, Maksoud MA, El-Sayyad GS, Labib S, Abdeltwab E, et al. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology. 2018;40:141–51. El-Shahawy AA, El-Ela FI, Mohamed NA, Eldine ZE, El Rouby WM. Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram-positive and gram-negative bacteria. Mater Sci Eng C. 2018;91:361–71. Marimuthu S, Rahuman AA, Kirthi AV, Santhoshkumar T, Jayaseelan C, Rajakumar G. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors. Parasitol Res. 2013;112:4105–12. Martín-Navarro CM, López-Arencibia A, Lorenzo-Morales J, Oramas-Royo S, Hernández-Molina R, Estévez-Braun A, et al. Acanthamoeba castellanii Neff: In vitro activity against the trophozoite stage of a natural sesquiterpene and a synthetic cobalt (II)-lapachol complex. Exp Parasitol. 2010;126:106–8. Sissons J, Alsam S, Stins M, Rivas AO, Morales JL, Faull J, et al. Use of in vitro assays to determine effects of human serum on biological characteristics of Acanthamoeba castellanii. J Clin Microbiol. 2006;44:2595–600. Siddiqui R, Lakhundi S, Khan NA. Status of the effectiveness of contact lens solutions against keratitis-causing pathogens. Cont Lens Anter Eye. 2015;38:34–8. Dudley R, Jarroll EL, Khan NA. Carbohydrate analysis of Acanthamoeba castellanii. Exp Parasitol. 2009;122:338–43. Jeyamogan S, Khan NA, Anwar A, Shah MR, Siddiqui R. Cytotoxic effects of benzodioxane, naphthalene diimide, porphyrin and acetamol derivatives on HeLa cells. SAGE Open Med. 2018;6:2050312118781962. Iqbal J, Numan A, Rafique S, Jafer R, Mohamad S, Ramesh K, et al. High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim Acta. 2018;278:72–82. Shahid MM, Ismail AH, AL-Mokaram AM, Vikneswaran R, Ahmad S, Hamza A, et al. A single-step synthesis of nitrogen-doped graphene sheets decorated with cobalt hydroxide nanoflakes for the determination of dopamine. Prog Nat Sci Mater. 2017;27:582–7. Kim KH, Jeong JM, Lee SJ, Choi BG, Lee KG. Protein-directed assembly of cobalt phosphate hybrid nanoflowers. J Colloid Interface Sci. 2016;484:44–50. Abjani F, Khan NA, Yousuf FA, Siddiqui R. Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Contact Lens Anterior Eye. 2016;39:239–43. Baig AM. Pathogenesis of amoebic encephalitis: are the amoebae being credited to an ‘inside job’done by the host immune response? Acta Trop. 2015;148:72–6. Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015;22:10. Pandey BK, Shahi AK, Srivastava N, Kumar G, Gopal R. Synthesis and cytogenic effect of magnetic nanoparticles. Adv Mater Lett. 2015;6:954–60. Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Maaza M. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.07.004. Heli H, Sattarahmady N, Hatam GR, Reisi F, Vais RD. An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots. Talanta. 2016;156:172–9.