Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries
Tài liệu tham khảo
Han, 2015, A battery made from a single material, Adv. Mater., 27, 3473, 10.1002/adma.201500180
Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066
Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 10.1038/nenergy.2016.30
Seino, 2014, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7, 627, 10.1039/C3EE41655K
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Tang, 2021, Electro-chemo-mechanics of lithium in solid state lithium metal batteries, Energy Environ. Sci., 14, 602, 10.1039/D0EE02525A
Manthiram, 2016, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater., 6, 10.1002/aenm.201501010
Nayak, 2018, Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-Ion batteries, Adv. Energy Mater., 8, 10.1002/aenm.201702397
Xin, 2019, Coating/substitution enhances the electrochemical performance of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathode, ACS Appl. Mater. Interfaces, 11, 34889, 10.1021/acsami.9b09696
Goodenough, 2013, The Li-Ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Li, 2020, LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery, J. Energy Chem., 40, 39, 10.1016/j.jechem.2019.02.006
Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x
Liu, 2021, Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries, Adv. Energy Mater., 11
Wang, 2020, Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries, Energy Stor. Mater., 30, 98
Ye, 2021, A dynamic stability design strategy for lithium metal solid state batteries, Nature, 593, 218, 10.1038/s41586-021-03486-3
Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018
Zhang, 2020, Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up, Nat. Nanotechnol., 15, 94, 10.1038/s41565-019-0604-x
Li, 2019, Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-Ion batteries, ACS Energy Lett., 4, 2480, 10.1021/acsenergylett.9b01676
Ong, 2013, Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors, Energy Environ. Sci., 6, 148, 10.1039/C2EE23355J
Tippens, 2019, Visualizing chemomechanical degradation of a solid-state battery electrolyte, ACS Energy Lett., 4, 1475, 10.1021/acsenergylett.9b00816
Wenzel, 2016, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode, Chem. Mater., 28, 2400, 10.1021/acs.chemmater.6b00610
Zhu, 2016, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem., 4, 3253, 10.1039/C5TA08574H
Tan, 2021, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494, 10.1126/science.abg7217
Miyazaki, 2019, Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries, J. Power Sources, 427, 15, 10.1016/j.jpowsour.2019.04.068
Wu, 2019, Operando visualization of morphological dynamics in all-solid-state batteries, Adv. Energy Mater., 9, 10.1002/aenm.201901547
Pan, 2022, Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability, Sci. Adv., 8, eabn4372, 10.1126/sciadv.abn4372
Sun, 2018, A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode, Energy Stor. Mater., 15, 209
Zhu, 2022, In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries, Energy Stor. Mater., 49, 546
Jing, 2022, Li-Indium alloy anode for high-performance Li-metal batteries, J. Alloys Compd., 924, 10.1016/j.jallcom.2022.166517
Lee, 2020, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5, 299, 10.1038/s41560-020-0575-z
Wang, 2021, Deciphering interfacial chemical and electrochemical reactions of sulfide-based all-solid-state batteries, Adv. Energy Mater., 11
Zhou, 2022, High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes, Nat. Energy, 7, 83, 10.1038/s41560-021-00952-0
Wang, 2022, Regulating the effects of SnS shrinkage in all-solid-state lithium-ion batteries with excellent electrochemical performance, Chem. Eng. J., 429, 10.1016/j.cej.2021.132424
Santhosha, 2019, The Indium−Lithium electrode in solid-state lithium-Ion batteries: phase formation, redox potentials, and interface stability, Batteries Supercaps, 2, 524, 10.1002/batt.201800149
Li, 2020, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456, 10.1016/j.jpowsour.2020.227997
Choi, 2018, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10, 31404, 10.1021/acsami.8b11244
Xu, 2018, Interface engineering of sulfide electrolytes for all-solid-state lithium batteries, Nano Energy, 53, 958, 10.1016/j.nanoen.2018.09.061
Wen, 1980, Thermodynamic and mass transport properties of “LiIn”, Mater. Res. Bull., 15, 1225, 10.1016/0025-5408(80)90024-0
Luo, 2021, Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes, Nat. Commun., 12, 6968, 10.1038/s41467-021-27311-7
Lu, 2021, The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes, Sci. Adv., 7, 10.1126/sciadv.abi5520
Park, 2019, High areal capacity battery electrodes enabled by segregated nanotube networks, Nat. Energy, 4, 560, 10.1038/s41560-019-0398-y
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Fan, 2020, Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries, Nano Energy, 70, 10.1016/j.nanoen.2020.104450
Peng, 2021, LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures, Energy Stor. Mater., 43, 53
Peng, 2021, Tuning solid interfaces via varying electrolyte distributions enables high performance solid-state batteries, Energy Environ. Mater.
Tan Darren, 2021, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494, 10.1126/science.abg7217
Wang, 2021, A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries, Nat. Commun., 12, 4410, 10.1038/s41467-021-24697-2
Zhang, 2021, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater., 41, 505