Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries

eScience - Tập 3 - Trang 100087 - 2023
Zaifa Wang1, Jun Zhao1, Xuedong Zhang2, Zhaoyu Rong1, Yongfu Tang1,3, Xinyu Liu4, Lingyun Zhu5, Liqiang Zhang1, Jianyu Huang1,2
1Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
3Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
4Guilin Electrical Equipment Scientific Research Institute Co., Ltd., Guilin 541004, China
5School of Materials Science & Engineering, Anhui University, Hefei 230601, PR China

Tài liệu tham khảo

Han, 2015, A battery made from a single material, Adv. Mater., 27, 3473, 10.1002/adma.201500180 Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066 Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 10.1038/nenergy.2016.30 Seino, 2014, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7, 627, 10.1039/C3EE41655K Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16 Tang, 2021, Electro-chemo-mechanics of lithium in solid state lithium metal batteries, Energy Environ. Sci., 14, 602, 10.1039/D0EE02525A Manthiram, 2016, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater., 6, 10.1002/aenm.201501010 Nayak, 2018, Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-Ion batteries, Adv. Energy Mater., 8, 10.1002/aenm.201702397 Xin, 2019, Coating/substitution enhances the electrochemical performance of the LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathode, ACS Appl. Mater. Interfaces, 11, 34889, 10.1021/acsami.9b09696 Goodenough, 2013, The Li-Ion rechargeable battery: a perspective, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438 Li, 2020, LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery, J. Energy Chem., 40, 39, 10.1016/j.jechem.2019.02.006 Liu, 2019, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4, 180, 10.1038/s41560-019-0338-x Liu, 2021, Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries, Adv. Energy Mater., 11 Wang, 2020, Single crystal cathodes enabling high-performance all-solid-state lithium-ion batteries, Energy Stor. Mater., 30, 98 Ye, 2021, A dynamic stability design strategy for lithium metal solid state batteries, Nature, 593, 218, 10.1038/s41586-021-03486-3 Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018 Zhang, 2020, Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up, Nat. Nanotechnol., 15, 94, 10.1038/s41565-019-0604-x Li, 2019, Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-Ion batteries, ACS Energy Lett., 4, 2480, 10.1021/acsenergylett.9b01676 Ong, 2013, Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors, Energy Environ. Sci., 6, 148, 10.1039/C2EE23355J Tippens, 2019, Visualizing chemomechanical degradation of a solid-state battery electrolyte, ACS Energy Lett., 4, 1475, 10.1021/acsenergylett.9b00816 Wenzel, 2016, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode, Chem. Mater., 28, 2400, 10.1021/acs.chemmater.6b00610 Zhu, 2016, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem., 4, 3253, 10.1039/C5TA08574H Tan, 2021, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494, 10.1126/science.abg7217 Miyazaki, 2019, Charge-discharge performances of Sn powder as a high capacity anode for all-solid-state lithium batteries, J. Power Sources, 427, 15, 10.1016/j.jpowsour.2019.04.068 Wu, 2019, Operando visualization of morphological dynamics in all-solid-state batteries, Adv. Energy Mater., 9, 10.1002/aenm.201901547 Pan, 2022, Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability, Sci. Adv., 8, eabn4372, 10.1126/sciadv.abn4372 Sun, 2018, A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode, Energy Stor. Mater., 15, 209 Zhu, 2022, In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries, Energy Stor. Mater., 49, 546 Jing, 2022, Li-Indium alloy anode for high-performance Li-metal batteries, J. Alloys Compd., 924, 10.1016/j.jallcom.2022.166517 Lee, 2020, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5, 299, 10.1038/s41560-020-0575-z Wang, 2021, Deciphering interfacial chemical and electrochemical reactions of sulfide-based all-solid-state batteries, Adv. Energy Mater., 11 Zhou, 2022, High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes, Nat. Energy, 7, 83, 10.1038/s41560-021-00952-0 Wang, 2022, Regulating the effects of SnS shrinkage in all-solid-state lithium-ion batteries with excellent electrochemical performance, Chem. Eng. J., 429, 10.1016/j.cej.2021.132424 Santhosha, 2019, The Indium−Lithium electrode in solid-state lithium-Ion batteries: phase formation, redox potentials, and interface stability, Batteries Supercaps, 2, 524, 10.1002/batt.201800149 Li, 2020, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456, 10.1016/j.jpowsour.2020.227997 Choi, 2018, LiI-doped sulfide solid electrolyte: enabling a high-capacity slurry-cast electrode by low-temperature post-sintering for practical all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 10, 31404, 10.1021/acsami.8b11244 Xu, 2018, Interface engineering of sulfide electrolytes for all-solid-state lithium batteries, Nano Energy, 53, 958, 10.1016/j.nanoen.2018.09.061 Wen, 1980, Thermodynamic and mass transport properties of “LiIn”, Mater. Res. Bull., 15, 1225, 10.1016/0025-5408(80)90024-0 Luo, 2021, Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes, Nat. Commun., 12, 6968, 10.1038/s41467-021-27311-7 Lu, 2021, The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes, Sci. Adv., 7, 10.1126/sciadv.abi5520 Park, 2019, High areal capacity battery electrodes enabled by segregated nanotube networks, Nat. Energy, 4, 560, 10.1038/s41560-019-0398-y Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K Fan, 2020, Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries, Nano Energy, 70, 10.1016/j.nanoen.2020.104450 Peng, 2021, LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures, Energy Stor. Mater., 43, 53 Peng, 2021, Tuning solid interfaces via varying electrolyte distributions enables high performance solid-state batteries, Energy Environ. Mater. Tan Darren, 2021, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494, 10.1126/science.abg7217 Wang, 2021, A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries, Nat. Commun., 12, 4410, 10.1038/s41467-021-24697-2 Zhang, 2021, Self-Stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Stor. Mater., 41, 505