How to avoid a compact set

Advances in Mathematics - Tập 317 - Trang 758-785 - 2017
Antongiulio Fornasiero1, Philipp Hieronymi2, Erik Walsberg2
1Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat Ram, Jerusalem 9190401, Israel
2Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, United States

Tài liệu tham khảo

Adamczewski, 2011, An analogue of Cobham's theorem for fractals, Trans. Amer. Math. Soc., 363, 4421, 10.1090/S0002-9947-2011-05357-2 Boigelot, 1998, On the expressiveness of real and integer arithmetic automata (extended abstract), 152 Büchi, 1962, On a decision method in restricted second order arithmetic, 1 Charlier, 2015, An analogue of Cobham's theorem for graph directed iterated function systems, Adv. Math., 280, 86, 10.1016/j.aim.2015.04.008 Dolich, 2010, Structures having o-minimal open core, Trans. Amer. Math. Soc., 362, 1371, 10.1090/S0002-9947-09-04908-3 Edgar, 2001, Hausdorff dimension, analytic sets and transcendence, Real Anal. Exchange, 27, 335, 10.2307/44154130 Engelking, 1978, Dimension Theory, vol. 19 Falconer, 2003 Fornasiero Friedman, 2001, Expansions of o-minimal structures by sparse sets, Fund. Math., 167, 55, 10.4064/fm167-1-4 Friedman, 2010, Expansions of the real field by open sets: definability versus interpretability, J. Symbolic Logic, 75, 1311, 10.2178/jsl/1286198148 Gabrielov, 1996, Complements of subanalytic sets and existential formulas for analytic functions, Invent. Math., 125, 1, 10.1007/s002220050066 Hieronymi, 2010, Defining the set of integers in expansions of the real field by a closed discrete set, Proc. Amer. Math. Soc., 138, 2163, 10.1090/S0002-9939-10-10268-8 P. Hieronymi, When is scalar multiplication decidable?, preprint, 2015. Hieronymi, 2016, A tame cantor set, J. Eur. Math. Soc. (JEMS) P. Hieronymi, C. Miller, Metric dimensions and tameness in expansions of the real field, preprint, 2015. Hieronymi, 2014, Interpreting the projective hierarchy in expansions of the real line, Proc. Amer. Math. Soc., 142, 3259, 10.1090/S0002-9939-2014-12023-5 Hieronymi, 2016, Interpreting the monadic second order theory of one successor in expansions of the real line, Israel J. Math. Järvenpää, 1994, On the upper Minkowski dimension, the packing dimension, and orthogonal projections, Ann. Acad. Sci. Fenn. Ser. A I. Math. Diss., 99, 34 Kechris, 1995, Classical Descriptive Set Theory, vol. 156 Khoussainov, 2001, Automata Theory and Its Applications, vol. 21 Mandelbrot, 1982 Marker, 2002, Model Theory. An introduction, vol. 217 Miller, 2005, Tameness in expansions of the real field, vol. 20, 281 Miller, 1999, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math., 162, 193 Pillay, 1989, Between groups and rings, Rocky Mountain J. Math., 19, 871, 10.1216/RMJ-1989-19-3-871 Pontryagin, 1930, Sur une hypothèse fondementale de la théorie de la dimension, C. R. Acad. Sci. (Paris), 190, 1105 Simon, 2015, A Guide to NIP Theories, vol. 44 Steinhaus, 1920, Sur les distances des points de mesure positive, Fund. Math., 1, 93, 10.4064/fm-1-1-93-104 van den Dries, 1998, Tame Topology and O-Minimal Structures, vol. 248 Wei, 2016, Remarks on dimensions of cartesian product sets, Fractals, 24, 10.1142/S0218348X16500316