Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool

CHEMOECOLOGY - Tập 28 - Trang 11-19 - 2018
Rosalie C. F. Burdon1, Robert R. Junker2, Douglas G. Scofield3,4, Amy L. Parachnowitsch1
1Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
2Department of Biosciences, University Salzburg, Salzburg, Austria
3Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
4Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden

Tóm tắt

Bacteria on floral tissue can have negative effects by consuming resources and affecting nectar quality, which subsequently could reduce pollinator visitation and plant fitness. Plants however can employ chemical defences to reduce bacteria density. In North American, bee-pollinated Penstemon digitalis, the nectar volatile S-(+)-linalool can influence plant fitness, and terpenes such as linalool are known for their antimicrobial properties suggesting that it may also play a role in plant–microbe interactions. Therefore, we hypothesized linalool could affect bacterial growth on P. digitalis plants/flowers. Because P. digitalis emits linalool from nectar and nectary tissue but not petals, we hypothesised that the effects of linalool could depend on tissue of origin due to varying exposure. We isolated bacteria from nectary tissue, petals and leaves, and compared their growth relative to control using two volatile concentrations representing the natural emission range of linalool. To assess whether effects were specific to linalool, we compared results with the co-occurring nectar volatile, methyl nicotinate. We show that response to floral volatiles can be substance and tissue-origin specific. Because linalool could slow growth rate of bacteria across the P. digitalis phyllosphere, floral emission of linalool could play a role in mediating plant–bacteria interactions in this system.

Tài liệu tham khảo

Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266. https://doi.org/10.1139/cjb-2013-0166 Álvarez-Pérez S, Herrera CM, Vega C (2012) Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities. FEMS Microbiol Ecol 80:591–602. https://doi.org/10.1111/j.1574-6941.2012.01329.x Álvarez-Pérez S, Lievens B, Jacquemyn H, Herrera CM (2013) Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 63:1532–1539. https://doi.org/10.1099/ijs.0.043489-0 Bartlewicz J, Lievens B, Honnay O, Jacquemyn H (2016) Microbial diversity in the floral nectar of Linaria vulgaris along an urbanization gradient. BMC Ecol. https://doi.org/10.1186/s12898-016-0072-1 Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41:D36–D42. https://doi.org/10.1093/nar/gks1195 Brady CL, Venter SN, Cleenwerck I et al (2009) Pantoea vagans sp. nov., Pantoea eucalypti sp. nov., Pantoea deleyi sp. nov. and Pantoea anthophila sp. nov. Int J Syst Evol Microbiol 59:2339–2345. https://doi.org/10.1099/ijs.0.009241-0 Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106 Burdon RCF, Raguso RA, Kessler A, Parachnowitsch AL (2015) Spatiotemporal floral scent variation of Penstemon digitalis. J Chem Ecol 41:641–650. https://doi.org/10.1007/s10886-015-0599-1 Canto A, Herrera CM (2012) Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community. Ann Bot 110:1173–1183. https://doi.org/10.1093/aob/mcs183 Coutinho TA, Venter SN (2009) Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 10:325–335. https://doi.org/10.1111/j.1364-3703.2009.00542.x Del Giudice L, Massardo DR, Pontieri P et al (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis: Vetiver root bacteria and essential oil biogenesis. Environ Microbiol 10:2824–2841. https://doi.org/10.1111/j.1462-2920.2008.01703.x Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32. https://doi.org/10.1111/nph.12145 Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. https://doi.org/10.1007/s10886-012-0135-5 Feistner G, Korth H, Ko H et al (1983) Ferrorosamine A from Erwinia rhapontici. Curr Microbiol 8:239–243. https://doi.org/10.1007/BF01579553 Fridman S, Izhaki I, Gerchman Y, Halpern M (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4:97–104. https://doi.org/10.1111/j.1758-2229.2011.00309.x Good AP, Gauthier M-PL, Vannette RL, Fukami T (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS One 9:e86494. https://doi.org/10.1371/journal.pone.0086494 Grenier A-M, Duport G, Pages S et al (2006) The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl Environ Microbiol 72:1956–1965. https://doi.org/10.1128/AEM.72.3.1956-1965.2006 Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332. https://doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322::AID-FFJ837>3.0.CO;2-4 Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990. https://doi.org/10.1046/j.1365-2672.1999.00780.x Hao MV, Brenner DJ, Steigerwalt AG et al (1990) Erwinia persicinus, a new species isolated from plants. Int J Syst Evol Microbiol 40:379–383. https://doi.org/10.1099/00207713-40-4-379 Helletsgruber C, Dötterl S, Ruprecht U, Junker RR (2017) Epiphytic bacteria alter floral scent emissions. J Chem Ecol. https://doi.org/10.1007/s10886-017-0898-9 Herman A, Tambor K, Herman A (2016) Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol 72:165–172. https://doi.org/10.1007/s00284-015-0933-4 Herrera CM, García IM, Pérez R (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89:2369–2376. https://doi.org/10.1890/08-0241.1 Höferl M, Buchbauer G, Jirovetz L et al (2009) Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents. J Essent Oil Res 21:459–463. https://doi.org/10.1080/10412905.2009.9700218 Huang M, Sanchez-Moreiras AM, Abel C et al (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x Inglis PW, Burden JL, Peberdy JF (1996) Evidence for the association of the enteric bacterium Ewingella americana with internal stipe necrosis of Agaricus bisporus. Microbiology 142:3253–3260. https://doi.org/10.1099/13500872-142-11-3253 Jacquemyn H, Lenaerts M, Tyteca D, Lievens B (2013) Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. MicrobiologyOpen 2:644–658. https://doi.org/10.1002/mbo3.103 Johnson KB, Stockwell VO, Sawyer TL, Sugar D (2000) Assessment of environmental factors influencing growth and spread of Pantoea agglomerans on and among blossoms of pear and apple. Phytopathology 90:1285–1294. https://doi.org/10.1094/PHYTO.2000.90.11.1285 Junker RR, Bluthgen N (2008) Floral scents repel potentially nectar-thieving ants. Evol Ecol Res 10:295 Junker RR, Parachnowitsch AL (2015) Working towards a holistic view on flower traits—how floral scents mediate plant–animal interactions in concert with other floral characters. J Indian Inst Sci 95:43–68 Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant–microbe interface. J Chem Ecol 39:810–825. https://doi.org/10.1007/s10886-013-0325-9 Junker RR, Loewel C, Gross R et al (2011) Composition of epiphytic bacterial communities differs on petals and leaves: bacterial communities on flowers and leaves. Plant Biol 13:918–924. https://doi.org/10.1111/j.1438-8677.2011.00454.x Junker RR, Romeike T, Keller A, Langen D (2014) Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie 45:467–477. https://doi.org/10.1007/s13592-013-0262-1 Kahm M, Hasenbrink G, Lichtenberg-Fraté H et al (2010) Grofit: fitting biological growth curves with R. J Stat Softw 33:1–21. https://doi.org/10.18637/jss.v033.i07 Kamatou GPP, Viljoen AM (2008) Linalool—a review of a biologically active compound of commercial importance. Nat Prod Commun 3:1183–1192 Kamber T, Smits THM, Rezzonico F, Duffy B (2012) Genomics and current genetic understanding of Erwinia amylovora and the fire blight antagonist Pantoea vagans. Trees 26:227–238. https://doi.org/10.1007/s00468-011-0619-x Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata: function of floral secondary metabolites. Plant J 49:840–854. https://doi.org/10.1111/j.1365-313X.2006.02995.x Kleinheinz GT, Bagley ST, John WS et al (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37:151–157. https://doi.org/10.1007/s002449900500 Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2 Lenaerts M, Álvarez-Pérez S, de Vega C et al (2014) Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst Appl Microbiol 37:402–411. https://doi.org/10.1016/j.syapm.2014.03.002 Lievens B, Hallsworth JE, Pozo MI et al (2015) Microbiology of sugar-rich environments: diversity, ecology and system constraints: microbiology of sugar-rich environments. Environ Microbiol 17:278–298. https://doi.org/10.1111/1462-2920.12570 Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003 Martínez-Rodríguez del JC, Mora-Amutio MDL, Plascencia-Correa LA et al (2014) Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters. Braz J Microbiol 45:1333–1339. https://doi.org/10.1590/S1517-83822014000400025 McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636. https://doi.org/10.1111/ele.12257 Parachnowitsch AL, Raguso RA, Kessler A (2012) Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytol 195:667–675. https://doi.org/10.1111/j.1469-8137.2012.04188.x Parachnowitsch AL, Burdon RCF, Raguso RA, Kessler A (2013) Natural selection on floral volatile production in Penstemon digitalis: highlighting the role of linalool. Plant Signal Behav 8:e22704. https://doi.org/10.4161/psb.22704 Queiroga CL, Teixeira Duarte MC, Baesa Ribeiro B, de Magalhães PM (2007) Linalool production from the leaves of Bursera aloexylon and its antimicrobial activity. Fitoterapia 78:327–328. https://doi.org/10.1016/j.fitote.2007.03.012 R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Rering C, Beck JJ, Hall GW et al (2017) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. https://doi.org/10.1111/nph.14809 Samuni-Blank M, Izhaki I, Laviad S et al (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS One 9:e99107. https://doi.org/10.1371/journal.pone.0099107 Sansores-Peraza P, Rosado-Vallado M, Brito-Loeza W et al (2000) Cassine, an antimicrobial alkaloid from Sennaracemosa. Fitoterapia 71:690–692. https://doi.org/10.1016/S0367-326X(00)00152-0 Santos M, Diánez F, Miñano J et al (2009) First report of Erwinia aphidicola from Phaseolus vulgaris and Pisum sativum in Spain: new disease reports. Plant Pathol 58:1171–1171. https://doi.org/10.1111/j.1365-3059.2009.02106.x Satomi M (2006) Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int J Syst Evol Microbiol 56:1735–1740. https://doi.org/10.1099/ijs.0.64189-0 Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798. https://doi.org/10.1890/13-1740.1 Schmidt E, Jirovetz L, Buchbauer G et al (2005) Antimicrobial testings and gas chromatographic analyses of aroma chemicals. J Essent Oil Bear Plants 8:99–106. https://doi.org/10.1080/0972060X.2005.10643427 Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249. https://doi.org/10.1139/w03-118 Taniguchi S, Hosokawa-Shinonaga Y, Tamaoki D et al (2014) Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ 37:451–461. https://doi.org/10.1111/pce.12169 Theis N, Lerdau M, Raguso RA (2007) The challenge of attracting pollinators while evading floral herbivores: patterns of fragrance emission in Cirsium arvense and Cirsium repandum (Asteraceae). Int J Plant Sci 168:587–601. https://doi.org/10.1086/513481 Vannette RL, Fukami T (2016) Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 97:1410–1419. https://doi.org/10.1890/15-0858.1 Vannette RL, Gauthier M-PL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc Lond B Biol Sci 280:20122601. https://doi.org/10.1098/rspb.2012.2601 Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851. https://doi.org/10.1111/j.1365-2435.2009.01627.x Yang C-H, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci 98:3889–3894. https://doi.org/10.1073/pnas.051633898 Zajdel S, Graikou K, Głowniak K, Chinou I (2012a) Chemical analysis of selected Penstemon species and their antimicrobial activity. Planta Med. https://doi.org/10.1055/s-0032-1321020 Zajdel SM, Graikou K, Głowniak K, Chinou I (2012b) Chemical analysis of Penstemon campanulatus (Cav.) Willd.—antimicrobial activities. Fitoterapia 83:373–376. https://doi.org/10.1016/j.fitote.2011.11.021 Zajdel SM, Graikou K, Sotiroudis G et al (2013) Two new iridoids from selected Penstemon species—antimicrobial activity. Nat Prod Res 27:2263–2271. https://doi.org/10.1080/14786419.2013.825913