Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids)
Tóm tắt
The antibacterial behaviour of suspensions of zinc oxide nanoparticles (ZnO nanofluids) against E. Coli has been investigated. ZnO nanoparticles from two sources are used to formulate nanofluids. The effects of particle size, concentration and the use of dispersants on the antibacterial behaviour are examined. The results show that the ZnO nanofluids have bacteriostatic activity against E. coli. The antibacterial activity increases with increasing nanoparticle concentration and increases with decreasing particle size. Particle concentration is observed to be more important than particle size under the conditions of this work. The results also show that the use of two types of dispersants (Polyethylene Glycol (PEG) and Polyvinylpyrolidone (PVP)) does not affect much the antibacterial activity of ZnO nanofluids but enhances the stability of the suspensions. SEM analyses of the bacteria before and after treatment with ZnO nanofluids show that the presence of ZnO nanoparticles damages the membrane wall of the bacteria. Electrochemical measurements using a model DOPC monolayer suggest some direct interaction between ZnO nanoparticles and the bacteria membrane at high ZnO concentrations.
Tài liệu tham khảo
Axtell H.C, S.M. Hartley & R.A. Sallavanti, 2005. Multi-functional protective fiber and methods for use. United States Patent, US2005026778
Cho K.H., Park J.E., Osaka T. and Park S.G. (2005) Electrochim. Acta 51:956–960
Fu G., Vary P.S., Lin C.T. (2005) J. Phys. Chem. B 109:8889–8898
Hewitt C.J., Bellara S.T., Andreani A., Nebe-von-Caron G. and Mcfarlane C.M. (2001) Biotechnol. Lett. 23:667–675
Leermakers F.A.M. and Nelson A. (1990) Antimicrobial effect of surgical masks coated with nanoparticles J. Electroanal. Chem. 278:53–72
Li Y., Leung P., Yao L., Song Q.W. and Newton E. (2006) J. Hosp. Infect. 62:58–63
Makhluf S., Dror R., Nitzan Y., Abramovich Y., Jelinek R. and Gedanken A. (2005) Adv. Funct. Mater. 15:1708–1715
Nelson A., Geddes N. and Tattersall J. (2001) Cell. Mol. Biol. Lett. 6:319–326
Neville F., Cahuzac M., Nelson A. and Gidalevitz D. (2004) J. Phys., Condens. Matter 16:S2413–S2420
Roselli M., Finamore A., Garaguso I., Britti M.S. and Mengheri E. (2003) J. Nutr. 133:4077–4082
Sawai J., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1995a) J. Chem. Eng. Japan 28:288–293
Sawai J., Saito I., Kanou F., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1995b) J. Chem. Eng. Japan 28:352–354
Sawai J., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M.(1996a) J. Chem. Eng. Japan 29:251–256
Sawai J., Kawada E., Kanou F., Igarashi H., Hashimoto A., Kokugan T. and Shimizu M. (1996b) J. Chem. Eng. Japan 29:627–633
Sawai J., Kojima H., Igarashi H., Hashimoto A., Shoji S., Takehara A., Sawaki T, Kokugan T. and Shimizu M. (1997) J. Chem. Eng. Japan 30:1034–1039
Sawai J., Shoji S., Igarashi H., Hashimoto A., Kokugan T., Shimizu M. and Kojima H. (1998) J. Ferment. Bioeng. 86:521–522
Sawai J. (2003) J. Microbiol. Methods 54:177–182
Schumacher K., S. Hasenzahl & M. Moerters, 2004. Powder mixture consisting of titanium dioxide, zinc oxide and zinc/titanium mixed oxide. Patent WO2004056706
Sheng C. and Liu F. (2004) Powder Technol. 145:20– 24
Stoimenov P.K., Klinger R.L., Marchin G.L. and Klabunde K.J. (2002) Langmuir 18:6679–6686
Wang Y.L., Wan Y.Z., Dong X.H., Cheng G.X., Tao H.M. and Wen T.Y. (1998) Carbon 36:1567–1571
Yamamoto O., Hotta M., Sawai J., Sasamoto T. and Kojima H. (1998) J. Ceram. Soc. Japan 106:1007–1011
Yamamoto O. (2001a) Int. J. Inorgan. Mater. 3:643–646
Yamamoto O., Nakakoshi K., Sasamoto T., Nakagawa H. and Miura K. (2001b) Carbon 39:1643–1651
Yamamoto O. and Sawai J. (2001c) Bull. Chem. Soc. Japan 74:1761–1765
Yamamoto O., Sawai J. and Sasamoto T. (2000) International Int. J. Inorg. Mater. 2:451–454