Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wiss Alpenvereinshefte 25:1–230
Abele G (1994) Large rockslides: their causes and movement on internal sliding planes. Mt Res Dev 14(4):315–320
Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271
Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech Felsmechanik Mécanique des Roches 15(1):9–24
Davies TRH, McSaveney MJ (2003) Runout of rock avalanches and volcanic debris avalanches. In: International conference on fast slope movements, Naples, 11–13 May 2003
Davies TRH, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol J 109:67–79
Davies TR, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36(6):1096–1110
Davies T, McSaveney M, Kelfoun K (2010) Runout of the Socompa volcanic debris avalanche, Chile: a mechanical explanation for low basal shear resistance. Bull Volcanol 72(8):933–944
Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J Geophys Res B: Solid Earth 106(B1):553–566
Desmangles AI (2003) Extension of the fringe projection method to large object for shape and deformation measurement. Ecole Polytechnique Fédérale, Lausanne
Drake TG (1991) Granular flow. physical experiments and their implications for microstructural theories. J Fluid Mech 225:121–152
Erismann TH (1979) Mechanisms of large landslides. Rock Mech Felsmechanik Mécanique des Roches 12(1):15–46
Friedmann SJ, Taberlet N, Losert W (2006) Rock-avalanche dynamics: insights from granular physics experiments. Int J Earth Sci 95(5):911–919. doi: 10.1007/s00531-006-0067-9
Goguel J (1978) Scale-dependent rockslide mechanisms, with emphasis on the role of pore fluid vaporization. Rockslides Avalanches 1:693–705
Heim A (1882) Der Bergsturz von Elm. Z Dtsch Geol Ges 34:74–115
Heim A (1932) Bergsturz und menschenleben. Frets und Wasmuth, Zurich
Hungr O (1990) Mobility of rock avalanches. Reports of the National Research Institute for Earth Science and Disaster Prevention, vol 46
Hungr O (2002) Rock avalanche motion: process and modeling. In: Proceedings of NATO advanced research workshop, massive rock slope failure: new models for hazard assessment, 2002. 66–69
Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity. In Proceedings of the International Conference on Landslide Risk Management. 99–128
Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory. J Geophys Res B: Solid Earth 106(B1):537–552
Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J Geophys Res 109(F01015):16
Legros F (2006) Landslide mobility and the role of water. In Landslides from massive rock slope failure. Evans GS, Scarascia Mugnozza G, Strom A, Hermanns LR (eds). NATO Sciences Series, IV. Earth and Environmental Sciences 49:233–242
Manzella I (2008) Dry rock avalanche propagation: unconstrained flow experiments with granular materials and blocks at small scale. Ph.D. thesis no. 4032, Ecole Polytechnique Fédérale de Lausanne, CH
Manzella I, Labiouse V (2008a) Qualitative analysis of rock avalanches propagation by means of physical modelling of non-constrained gravel flows. Rock Mech Rock Eng 41(1):133–151
Manzella I, Labiouse V (2008b) Extension of the fringe projection method to measure shape and position of the centre of mass of granular flow deposit. Invited paper. Proceedings of the 12th IACMAG Conference, October 2008 in Goa, India. 4547−4554
Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol J 109:146–158
Manzella I, Labiouse V (2010) Physical modelling to better understand rock avalanches. Physical Modelling in Geotechnics—2010 Taylor & Francis Group, London, ISBN 978-0-415-59288-8 V.2:1259-1265
Massey BS (1983) Mechanics of fluids. Van Nostrand Reinhold (UK) Co. Ltd
McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. University of British Columbia, Vancouver
McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097
Okura Y, Kitahara H, Sammori T, Kawanami A (2000b) The effects of rockfall volume on runout distance. Eng Geol 58(2):109–124
Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches
Sassa K (1988) Special lecture: geotechnical model for the motion of landslides. In: Landslides. Proc. 5th symposium, Lausanne, 1988, Lausanne, 1988. 37–55
Sauthier C (In progress) Physical and numerical modelling of the propagation and spreading of dry rock avalanches. Ph.D. thesis in progress, Ecole Polytechnique Fédérale de Lausanne, CH
Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech Felsmechanik Mécanique des Roches 5(4):231–236
Van Gassen W, Cruden DM (1989) Momentum transfer and friction in the debris of rock avalanches. Can Geotech J 26(4):623–628. doi: 10.1139/t89-075
Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38(3–4):261–297
Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St-Helens rockslide-avalanche of 18 May 1980. Geotechnique 33(3):243–273
