Periodic solutions and almost periodic solutions of a neutral multispecies Logarithmic population model

Applied Mathematics and Computation - Tập 176 - Trang 431-441 - 2006
Fengde Chen1
1College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, PR China

Tài liệu tham khảo

Gopalsamy, 1992, Stability and Oscillation in Delay Differential Equations of Population Dynamics, vol. 74 Kirlinger, 1986, Permanence in Lotka–Volterra equations linked prey-predator systems, Math. Biosci., 82, 165, 10.1016/0025-5564(86)90136-7 Li, 1997, Attractivity of a positive periodic solution for all other positive solution in a delay population model, Appl. Math.-JCU, 12, 279 Chen, 2003, Positive periodic solutions of state-dependent delay logarithm population model, J. Fuzhou University, 31, 1, 10.1631/jzus.2003.0001 Liu, 2002, Positive periodic solutions for delay multispecies Logrithmic population model, J. Eng. Math., 19, 11 F.D. Chen, Periodic solutions and almost periodic solutions for a delay multispecies Logarithmic population model, Appl. Math. Comput., in press. Li, 1999, On a periodic neutral delay logarithmic population model, J. Sys. Sci. Math. Sci., 19, 34 Lu, 2004, Existence of positive periodic solutions for neutral logarithmic population model with multiple delays, J. Comput. Appl. Math., 166, 371, 10.1016/j.cam.2003.08.033 Li, 1996, Positive periodic solution for neutral delay model, Acta Math. Sin., 39, 789 Fang, 2001, On the existence of periodic solutions of a neutral delay model of single-species population growth, J. Math. Anal. Appl., 259, 8, 10.1006/jmaa.2000.7340 Lu, 2002, Existence of positive periodic solutions for neutral functional differential equations with deviating arguments, Appl. Math. J. Chinese Univ. Ser. B, 17, 382, 10.1007/s11766-996-0002-7 Yang, 2003, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delays models, Appl. Math. Comput., 142, 123, 10.1016/S0096-3003(02)00288-6 Yang, 2004, Positive periodic solutions of neutral Lotka-Volterra system with periodic delays, Appl. Math. Comput., 149, 661, 10.1016/S0096-3003(03)00170-X Li, 2000, On a periodic neutral delay Lotka–Volterra system, Nonlinear Anal., 39, 767, 10.1016/S0362-546X(98)00235-1 Huo, 2003, Existence of positive periodic solutions of a neutral Lotka-Volterra system with delays, Acta Math. Sinica, 46, 1199 Chen, 2004, Sufficient conditions for the existence positive periodic solutions of a class of neutral delay models with feedback control, Appl. Math. Comput., 158, 45, 10.1016/j.amc.2003.08.063 Chen, 2005, Positive periodic solutions of neutral Lotka–Volterra system with feedback control, Appl. Math. Comput., 162, 1279, 10.1016/j.amc.2004.03.009 Chen, 2004, Periodicity in a Logistic type system with several delays, Comput. Math. Appl., 48, 35, 10.1016/j.camwa.2004.02.001 Chen, 2003, Periodicity in a food-limited population model with toxicants and state dependent delays, J. Math. Anal. Appl., 288, 132, 10.1016/S0022-247X(03)00586-9 Fang, 2003, Positive periodic solutions of n-species neutral delay systems, Czechoslovak Math. J., 53, 561, 10.1023/B:CMAJ.0000024503.03321.b1 Liu, 2004, Positive periodic solution for a neutral delay competitive system, J. Math. Anal. Appl., 293, 181, 10.1016/j.jmaa.2003.12.035 Raffoul, 2003, Periodic solutions for neutral nonlinear differential equations with functional delay, 2003, 1 Chen, 2004, On the existence and uniqueness of periodic solutions of a kind of integro-differential equations, Acta Math. Sinica, 47, 973 Xie, 2004, Exponential stability and periodic solution for cellular neural networks with time delay, J. Huaqiao University, 25, 22 Gopalsamy, 1985, A simple stability criterion for linear neutral differential systems, Funkcial Ekvac., 28, 33