Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material

Carbon - Tập 193 - Trang 216-229 - 2022
Luo Kong1, Sihan Luo1, Guiqin Zhang1, Hailong Xu2, Tong Wang1, Jianfeng Huang1, Xiaomeng Fan3
1School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
2Institute of Textiles and Clothing, The Hong Kong Polytechnic University, China
3Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China

Tài liệu tham khảo

Wang, 2020, Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding, J. Mater. Chem., 46, 2050 Liu, 2021, Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective, J. Phys. D Appl. Phys., 54, 203001, 10.1088/1361-6463/abe26d Kong, 2013, Recent progress in some composite materials and structures for specific electromagnetic applications, Int. Mater. Rev., 58, 203, 10.1179/1743280412Y.0000000011 Song, 2020, Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range, Adv. Funct. Mater., 31, 202000457 Yin, 2014, Electromagnetic properties of Si-C-N based ceramics and composites, Int. Mater. Rev., 59, 326, 10.1179/1743280414Y.0000000037 Wang, 2018, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding, Carbon, 140, 696, 10.1016/j.carbon.2018.09.006 Duan, 2019, Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite, Carbon, 153, 682, 10.1016/j.carbon.2019.07.078 Kazem, 2017, Nanostructured materials for microwave receptors, Prog. Mater. Sci., 87, 221, 10.1016/j.pmatsci.2017.02.005 Liang, 2021, Heterointerface engineering in electromagnetic absorbers: new insights and opportunities, Adv. Mater., 2106195 Zhao, 2022, Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption, Carbon, 186, 323, 10.1016/j.carbon.2021.10.052 Xu, 2018, Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature, Carbon, 132, 343, 10.1016/j.carbon.2018.02.040 Kong, 2019, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite, Carbon, 145, 61, 10.1016/j.carbon.2019.01.009 Li, 2019, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures, Adv. Sci., 6, 1801057, 10.1002/advs.201801057 Yu, 2019, Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption, Chem. Eng. J., 375, 121914, 10.1016/j.cej.2019.121914 Kong, 2017, Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties, Carbon, 111, 94, 10.1016/j.carbon.2016.09.066 Shan, 2015, Fabrication of polypyrrole/nano-exfoliated graphite composites by in situ intercalation polymerization and their microwave absorption properties, Compos. B Eng., 73, 181, 10.1016/j.compositesb.2014.11.042 Kong, 2021, Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes, Carbon, 183, 322, 10.1016/j.carbon.2021.07.018 Kong, 2017, Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer, J. Mater. Chem. C, 5, 7479, 10.1039/C7TC02701J Ye, 2019, Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites, Ceram. Int., 45, 5093, 10.1016/j.ceramint.2018.11.212 Zhou, 2019, Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152, 827, 10.1016/j.carbon.2019.06.080 Xu, 2019, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon, 142, 346, 10.1016/j.carbon.2018.10.056 Gao, 2021, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 1 Liu, 2016, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28, 486, 10.1002/adma.201503149 Liu, 2016, Functionalization of polydopamine via the Aza-Michael reaction for antimicrobial interfaces, Langmuir, 19, 5019, 10.1021/acs.langmuir.6b00990 Postma, 2009, Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules, Chem. Mater., 14, 3042, 10.1021/cm901293e Wen, 2013, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65, 124, 10.1016/j.carbon.2013.07.110 Duan, 2014, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic, J. Eur. Ceram. Soc., 34, 257, 10.1016/j.jeurceramsoc.2013.08.029 Van Beek, 1960, The Maxwell-Wagner-Sillars effect, describing apparent dielectric loss in inhomogeneous media, Physica, 26, 66, 10.1016/0031-8914(60)90115-4 Rogti, 2014, Maxwell-Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers, J. Electrost., 72, 91, 10.1016/j.elstat.2013.11.012 Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095, 10.1103/PhysRevB.61.14095 Yuan, 2015, Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors, J. Mater. Chem., 7, 3409, 10.1039/C4TA06411A Chang, 2018, Enhancement of the wear and corrosion resistance of DLC/oxynitriding duplex-treated PM30 steel by the asymmetric bipolar-pulsed plasma enhanced CVD, ISIJ Int., 58, 1510, 10.2355/isijinternational.ISIJINT-2018-143 Matthews, 1999, Origin of dispersive effects of the Raman D band in carbon materials, Phys. Rev. B, 59, 6585, 10.1103/PhysRevB.59.R6585 Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 64, 14095, 10.1103/PhysRevB.61.14095 Cui, 2010, Quantitative measurements of sp3 content in DLC films with Raman spectroscopy, Surf. Coating. Technol., 205, 1995, 10.1016/j.surfcoat.2010.08.093 Escribano, 2001, Raman spectroscopy of carbon-containing particles, Vib. Spectrosc., 26, 179, 10.1016/S0924-2031(01)00106-0 Liu, 2018, Paper-derived cobalt and nitrogen co-doped carbon nanotube@porous carbon as a nonprecious metal electrocatalyst for the oxygen reduction reaction, Chin. J. Catal., 39, 790, 10.1016/S1872-2067(17)62982-6 Yu, 2012, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties, J. Mater. Chem., 22, 21679, 10.1039/c2jm34273a Yang, 2021, Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption, J. Mater. Sci. Technol., 70, 214, 10.1016/j.jmst.2020.08.059 Lv, 2020, An electrical switch-driven flexible electromagnetic absorber, Adv. Funct. Mater., 30, 1907251, 10.1002/adfm.201907251 Yin, 2012, Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites, Ceram. Int., 38, 2421, 10.1016/j.ceramint.2011.11.008 Chen, 2021, Controllable fabrication of lightweight carbon with hierarchically hollow structure for enhanced microwave absorption, Diam. Relat. Mater., 113, 108285, 10.1016/j.diamond.2021.108285 Suetake, 1971, Application of ferrite absorber to electromagnetic and its characteristics, IEEE Trans. Microw. Theor., 19, 65, 10.1109/TMTT.1971.1127446 Che, 2004, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16, 401, 10.1002/adma.200306460 Thostenson, 1999, Microwave processing: fundamentals and applications, Compos. Part A-Appl. S., 30, 1055, 10.1016/S1359-835X(99)00020-2 Zhao, 2014, Electromagnetic wave absorbing properties of amorphous carbon nanotubes, Sci. Rep., 4 Quan, 2017, Dielectric polarization in electromagnetic wave absorption: review and perspective, J. Alloys Compd., 728, 1065, 10.1016/j.jallcom.2017.09.082 Yang, 2020, Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents, Carbon, 166, 218, 10.1016/j.carbon.2020.05.043 Kuriakose, 2014, Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals, Phys. Rev., 89, 22511 Xia, 2013, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material, Adv. Mater., 25, 6905, 10.1002/adma.201303088 Melvin, 2017, Performance of barium titanate@carbon nanotube nanocomposite as an electromagnetic wave absorber, Phys. Status Solidi, 214, 1600541, 10.1002/pssa.201600541 Cui, 2019, Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption, ACS Appl. Mater. Interfaces, 11, 31182, 10.1021/acsami.9b09779 She, 2016, Tunable microwave absorption frequency by aspect ratio of hollow polydopamine@α-MnO2 microspindles studied by electron holography, ACS Appl. Mater. Interfaces, 8, 9782, 10.1021/acsami.6b00978 Wang, 2019, Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth, Small, 15, 1900900, 10.1002/smll.201900900