Molecular mechanics of binding in carbon-nanotube–polymer composites
Tóm tắt
Nanoscale composites have been a technological dream for many years. Recently, increased interest has arisen in using carbon nanotubes as a filler for polymer composites, owing to their very small diameters on the order of 1 nm, very high aspect ratios of 1000 or more, and exceptional strength with Young’s modulus of approximately 1 TPa. A key issue for realizing these composites is obtaining good interfacial adhesion between the phases. In this work, we used force-field based molecular mechanics calculations to determine binding energies and sliding frictional stresses between pristine carbon nanotubes and a range of polymer substrates, in an effort to understand the factors governing interfacial adhesion. The particular polymers studied were chosen to correspond to reported composites in the literature. We also examined polymer morphologies by performing energy-minimizations in a vacuum. Hydrogen bond interactions with the ∏-bond network of pristine carbon nanotubes were found to bond most strongly to the surface, in the absence of chemically altered nanotubes. Surprisingly, we found that binding energies and frictional forces play only a minor role in determining the strength of the interface, but that helical polymer conformations are essential.
Tài liệu tham khảo
M.M.J Treacy, T.W. Ebbesen, and J.M. Gibson, Nature (London) 381, 678 (1996).
E.W. Wong, P.E. Sheehan, and C.M. Lieber, Science 277, 1971 (1997).
A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yanilos, and M.M.J Treacy, Phys. Rev. B 58, 14013 (1998).
J.P. Salvetat, G.A.D Briggs, J.M. Bonnard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, and L. Forró, Phys. Rev. Lett. 82, 944 (1999).
J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
B.I. Yakobson, C.J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).
N. Yao and V. Lordi, J. Appl. Phys. 84, 1939 (1998).
V. Lordi and N. Yao, J. Chem. Phys. 109, 2509 (1998).
N. Yao and V. Lordi, Phys. Rev. B 58, 12649 (1998).
S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, J. Chem. Phys. 104, 2089 (1996).
M.R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr, S. Washburn, and R. Superfine, Nature 389, 582 (1997).
T.W. Ebbeson, P.M. Ajayan, H. Hiura, and K. Tanigaki, Nature (London) 367, 519 (1994).
K. Tohji, T. Goto, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, T. Ohsuna, K. Hiraga, and Y. Nishina, Nature (London) 383, 679 (1996).
N. Yao, V. Lordi, S.X.C Ma, E. Dujardin, A. Krishnan, M.M.J Treacy, and T.W. Ebbesen, J. Mater. Res. 13, 2432 (1998);
V. Lordi, S.X.C Ma, and N. Yao, Surface Science, 421, 150 (1999).
N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
R. Saito, M. Fujita, G. Desselhaus, and M.S. Dresselhaus, Mat. Sci. Eng. B 19, 185 (1993).
R.A. Jishi, D. Inomata, K. Nakao, M.S. Dresselhaus, and G. Dresselhaus, J. Phys. Soc. Jap. 63, 2252 (1994).
J.W.G Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).
T.W. Odom, J-L. Huang, P. Kim, and C.M. Lieber, Nature (London) 391, 62 (1998).
L.S. Schadler, S.C. Giannaris, and P.M. Ajayan, Appl. Phys. Lett. 73, 3842 (1998).
P.M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).
C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Appl. Phys. Lett. 74, 3317 (1999).
L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, 1197 (1998).
S.A. Curran, P.M. Ajayan, W.J. Blau, D.L. Carroll, J.N. Coleman, A.B. Dalton, A.P. Davey, A. Drury, B. McCarthy, S. Maier, and A. Strevens, Adv. Mater. 10, 1091 (1998).
J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W. Blau and R.C. Barklie, Phys. Rev. B 58, R7492 (1998).
B.Z. Tang and H. Xu, Macromolecules 32, 2569 (1999).
H. Sun, S.J. Mumby, J.R. Maple, and A.T. Hagler, J. Amer. Chem. Soc. 116, 2978 (1994);
H. Sun, J. Comp. Chem. 15, 752 (1994);
H. Sun, Macromolecules 28, 701 (1995).
J.R. Maple, M-J. Hwang, T.P. Stockfisch, U. Dinur, M. Waldman, C.S. Ewing, and A.T. Hagler, J. Comput. Chem. 15, 162 (1994);
M-J. Hwang, T.P. Stockfisch, and A.T. Hagler, J. Am. Chem. Soc. 116, 2515 (1994).
A.P. Davey (personal communication).
C&EN June 7, 1999, p. 37.
V. Lordi, Senior Thesis, Princeton University, Princeton, NJ (June 1999).
H.C. Silvis and J.E. White, Polymer News 23, 6 (1998).
D.J. Brennan, J.E. White, and C.N. Brown, Macromolecules 31, 8281 (1998).
J. Tersoff and R.S. Ruoff, Phys. Rev. Lett. 73, 676 (1994).
R.A. Register (personal communication).
M.R. Falvo, R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr, S. Washburn, and R. Superfine, Nature 397, 236 (1999).
X. Blase, L.X. Bendict, E.L. Shirley, and S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994).
O. Stéphan, P.M. Ajayan, C. Colliex, F. Cyrot-Lackmann, and E. Sandré, Phys. Rev. B 53, 13824 (1996).
Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Phys. Rev. B 48, 1907 (1993).
W.D. Callister Jr, Materials Science and Engineering: An Introduction, 2nd ed. (Wiley, New York, 1991), p. 539ff.
Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 8, p. 25.
Encyclopedia of Polymer Science and Engineering, 2nd ed., edited by H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges (Wiley, New York, 1987), Vol. 5, p. 370.