Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling

Trends in Biochemical Sciences - Tập 30 - Trang 688-697 - 2005
Randen L. Patterson1, Damian B. van Rossum2, Nikolas Nikolaidis1, Donald L. Gill3, Solomon H. Snyder2,4
1Department of Biology, The Pennsylvania State University, Life Science Building, Shortlidge Road, University Park, PA 16801, USA
2Department of Neuroscience, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, MD 21205, USA
3Department of Biochemistry and Molecular Biology, University of Maryland, BMB building, 128 N. Greene Street, Baltimore, MD 21210, USA
4Department of Pharmacology and Molecular Science, and Department of Psychiatry, Johns Hopkins University, 725 N. Wolfe Street, Baltimore, MD 21205, USA

Tài liệu tham khảo

Berridge, 2000, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol., 1, 11, 10.1038/35036035 Venkatachalam, 2002, The cellular and molecular basis of store-operated calcium entry, Nat. Cell Biol., 4, E263, 10.1038/ncb1102-e263 Streb, 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, 306, 67, 10.1038/306067a0 Exton, 1997, Cell signalling through guanine-nucleotide-binding regulatory proteins (G proteins) and phospholipases, Eur. J. Biochem., 243, 10, 10.1111/j.1432-1033.1997.t01-1-00010.x Rebecchi, 2000, Structure, function, and control of phosphoinositide-specific phospholipase C, Physiol. Rev., 80, 1291, 10.1152/physrev.2000.80.4.1291 Desiderio, 1997, Role of Btk in B cell development and signaling, Curr. Opin. Immunol., 9, 534, 10.1016/S0952-7915(97)80107-0 Schwartzberg, 2005, TEC-family kinases: regulators of T-helper-cell differentiation, Nat. Rev. Immunol., 5, 284, 10.1038/nri1591 Patel, 1999, Molecular properties of inositol 1,4,5-trisphosphate receptors, Cell Calcium, 25, 247, 10.1054/ceca.1999.0021 Kiselyov, 1999, The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels, Mol. Cell, 4, 423, 10.1016/S1097-2765(00)80344-5 van Rossum, 2004, Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition, Proc. Natl. Acad. Sci. U. S. A., 101, 2323, 10.1073/pnas.0308565100 Putney, 1986, A model for receptor-regulated calcium entry, Cell Calcium, 7, 1, 10.1016/0143-4160(86)90026-6 Parekh, 1997, Store depletion and calcium influx, Physiol. Rev., 77, 901, 10.1152/physrev.1997.77.4.901 Clapham, 1995, Calcium signaling, Cell, 80, 259, 10.1016/0092-8674(95)90408-5 Putney, 2001, Mechanisms of capacitative calcium entry, J. Cell Sci., 114, 2223, 10.1242/jcs.114.12.2223 Clapham, 2003, TRP channels as cellular sensors, Nature, 426, 517, 10.1038/nature02196 Mignen, 2000, I(ARC), a novel arachidonate-regulated, noncapacitative Ca2+ entry channel, J. Biol. Chem., 275, 9114, 10.1074/jbc.275.13.9114 Hofmann, 1999, Direct activation of human TRP6 and TRP3 channels by diacylglycerol, Nature, 397, 259, 10.1038/16711 Venkatachalam, 2003, Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C, J. Biol. Chem., 278, 29031, 10.1074/jbc.M302751200 Patterson, 2002, Phospholipase C-γ is required for agonist-induced Ca2+ entry, Cell, 111, 529, 10.1016/S0092-8674(02)01045-0 Vanden, 2004, Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells, J. Biol. Chem., 279, 30326, 10.1074/jbc.M400106200 Irvine, 1990, ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates – a possible mechanism, FEBS Lett., 263, 5, 10.1016/0014-5793(90)80692-C Patterson, 1999, Store operated Ca2+ entry: evidence for a secretion-like coupling model, Cell, 98, 487, 10.1016/S0092-8674(00)81977-7 Hermosura, 2000, InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase, Nature, 408, 735, 10.1038/35047115 van Rossum, 2005, Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain, Nature, 434, 99, 10.1038/nature03340 Nishida, 2003, Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCγ2 in B lymphocytes, EMBO J., 22, 4677, 10.1093/emboj/cdg457 Furuichi, 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400, Nature, 342, 32, 10.1038/342032a0 Michikawa, 1999, Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor, Neuron, 23, 799, 10.1016/S0896-6273(01)80037-4 Ordaz, 2005, Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation, J. Biol Chem., 280, 30788, 10.1074/jbc.M504745200 Ferris, 1991, Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles, Proc. Natl. Acad. Sci. U. S. A., 88, 2232, 10.1073/pnas.88.6.2232 Tu, 1999, Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins, Neuron, 23, 583, 10.1016/S0896-6273(00)80810-7 Yuan, 2003, Homer binds TRPC family channels and is required for gating of TRPC1 by IP3-receptors, Cell, 114, 777, 10.1016/S0092-8674(03)00716-5 Sugawara, 1997, Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor, EMBO J., 16, 3078, 10.1093/emboj/16.11.3078 Shuttleworth, 2004, ARC channels: a novel pathway for receptor-activated calcium entry, Physiology (Bethesda), 19, 355, 10.1152/physiol.00018.2004 Yu, 2005, Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cg2 that specifically increases external Ca2+ entry, Immunity, 22, 451, 10.1016/j.immuni.2005.01.018 Tu, 2005, Phospholipase cγ1 is required for activation of store-operated channels in human keratinocytes, J. Invest. Dermatol., 124, 187, 10.1111/j.0022-202X.2004.23544.x Montell, 2001, Physiology, phylogeny, and functions of the TRP superfamily of cation channels, Sci. STKE., 2001, RE1, 10.1126/stke.2001.90.re1 Bach, G. (2004) Mucolipin 1: endocytosis and cation channel – a review. Pflugers Arch. doi: 10.1007/s00424-004-1361-7 Nauli, 2003, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells, Nat. Genet., 33, 129, 10.1038/ng1076 Li, 2005, Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor, Nature, 434, 894, 10.1038/nature03477 Shim, 2005, XTRPC1-dependent chemotropic guidance of neuronal growth cones, Nat. Neurosci., 8, 730, 10.1038/nn1459 Wang, 2005, Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones, Nature, 434, 898, 10.1038/nature03478 Greka, 2003, TRPC5 is a regulator of hippocampal neurite length and growth cone morphology, Nat. Neurosci., 6, 837, 10.1038/nn1092 Moran, 2004, TRP ion channels in the nervous system, Curr. Opin. Neurobiol., 14, 362, 10.1016/j.conb.2004.05.003 Tong, 2004, Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cγ and IP3R, Am. J. Physiol. Cell Physiol., 287, C1667, 10.1152/ajpcell.00265.2004 Runnels, 2002, The TRPM7 channel is inactivated by PIP2 hydrolysis, Nat. Cell Biol., 4, 329, 10.1038/ncb781 Zachos, 2005, Molecular physiology of intestinal Na+/H+ exchange, Annu. Rev. Physiol., 67, 411, 10.1146/annurev.physiol.67.031103.153004 Bezzerides, 2004, Rapid vesicular translocation and insertion of TRP channels, Nat. Cell Biol., 6, 709, 10.1038/ncb1150 Brown, 2003, The ins and outs of aquaporin-2 trafficking, Am. J. Physiol. Renal Physiol., 284, F893, 10.1152/ajprenal.00387.2002 Singh, 2004, VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx, Mol. Cell, 15, 635, 10.1016/j.molcel.2004.07.010 Cayouette, 2004, Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation, J. Biol. Chem., 279, 7241, 10.1074/jbc.M312042200 Ye, 2002, Phospholipase Cγ1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE, Nature, 415, 541, 10.1038/415541a Choi, 2004, Phospholipase C-γ1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis, J. Cell Sci., 117, 3785, 10.1242/jcs.01220 Takenaka, 2003, Role of phospholipase C-L2, a novel phospholipase C-like protein that lacks lipase activity, in B-cell receptor signaling, Mol. Cell. Biol., 23, 7329, 10.1128/MCB.23.20.7329-7338.2003 Kanematsu, 2002, Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function, EMBO J., 21, 1004, 10.1093/emboj/21.5.1004 Doughman, 2003, Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place, J. Membr. Biol., 194, 77, 10.1007/s00232-003-2027-7 Cullen, 2001, Modular phosphoinositide-binding domains – their role in signalling and membrane trafficking, Curr. Biol., 11, R882, 10.1016/S0960-9822(01)00523-1 Suh, 2005, Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate, Curr. Opin. Neurobiol., 15, 370, 10.1016/j.conb.2005.05.005 Prescott, 2003, A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity, Science, 300, 1284, 10.1126/science.1083646 Lemmon, 2005, Pleckstrin homology domains: two halves make a hole?, Cell, 120, 574, 10.1016/j.cell.2005.02.023 Takai, 2001, Small GTP-binding proteins, Physiol. Rev., 81, 153, 10.1152/physrev.2001.81.1.153 Fasolato, 1993, A GTP-dependent step in the activation mechanism of capacitative calcium influx, J. Biol. Chem., 268, 20737, 10.1016/S0021-9258(19)36843-7 Fernando, 1997, Evidence that a low-molecular-mass GTP-binding protein is required for store-activated Ca2+ inflow in hepatocytes, Biochem. J., 328, 463, 10.1042/bj3280463 Mullaney, 1988, A GTP-regulatory mechanism mediates calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool, Proc. Natl. Acad. Sci. U. S. A., 85, 2499, 10.1073/pnas.85.8.2499