The irace package: Iterated racing for automatic algorithm configuration

Operations Research Perspectives - Tập 3 - Trang 43-58 - 2016
Manuel López-Ibáñez1, Jérémie Dubois-Lacoste2, Leslie Pérez Cáceres2, Mauro Birattari2, Thomas Stützle2
1Alliance Manchester Business School, University of Manchester, UK
2IRIDIA, Université Libre de Bruxelles (ULB), CP 194/6, Av. F. Roosevelt 50 – B-1050 Brussels, Belgium

Tài liệu tham khảo

Acosta-Mesa, 2014, Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions, J Biomed Inform, 49, 73, 10.1016/j.jbi.2014.03.004 Adenso-Díaz, 2006, Fine-tuning of algorithms using fractional experimental design and local search, Oper Res, 54, 99, 10.1287/opre.1050.0243 Ansótegui, 2009, A gender-based genetic algorithm for the automatic configuration of algorithms, 142 Ansótegui, 2015, Model-based genetic algorithms for algorithm configuration, 733 Audet, 2006, Finding optimal algorithmic parameters using derivative-free optimization, SIAM J Optim, 17, 642, 10.1137/040620886 Audet, 2010, Algorithmic parameter optimization of the DFO method with the OPAL framework, 255 Aydın, 2015, Composite artificial bee colony algorithms: from component-based analysis to high-performing algorithms, Appl Soft Comput, 32, 266, 10.1016/j.asoc.2015.03.051 Babić, 2007, Structural abstraction of software verification conditions, 366 Babić, 2008, Spear theorem prover Balaprakash, 2007, Improvement strategies for the F-race algorithm: sampling design and iterative refinement, 108 Bartz-Beielstein, 2006 Bartz-Beielstein, 2005, Sequential parameter optimization, 773 Battiti, 2008 Benavides, 2015, Iterated local search heuristics for minimizing total completion time in permutation and non-permutation flow shops, 34 Bezerra, 2014, Deconstructing multi-objective evolutionary algorithms: an iterative analysis on the permutation flowshop, 57 Bezerra, 2014, Automatic design of evolutionary algorithms for multi-objective combinatorial optimization, 508 Bezerra, 2016, Automatic component-wise design of multi-objective evolutionary algorithms, IEEE Trans Evol Comput, 20, 403, 10.1109/TEVC.2015.2474158 Birattari, 2003, The race package for  R: racing methods for the selection of the best Birattari, 2009 Birattari, 2002, A racing algorithm for configuring metaheuristics, 11 Birattari, 2010, F-race and iterated F-race: an overview, 311 Bischl B., Lang M., Bossek J., Judt L., Richter J., Kuehn T., et al. mlr: machine learning in R. 2013. http://cran.r-project.org/package=mlr. R package. Blum, 2015, FrogCOL and frogMIS: new decentralized algorithms for finding large independent sets in graphs, Swarm Intell, 9, 205, 10.1007/s11721-015-0110-1 Blum, 2016, Construct, merge, solve & adapt: a new general algorithm for combinatorial optimization, Comput Oper Res, 68, 75, 10.1016/j.cor.2015.10.014 Ceschia, 2013, Local search techniques for a routing-packing problem, Comput Ind Eng, 66, 1138, 10.1016/j.cie.2013.07.025 Chen, 2016, A hybrid metaheuristic approach for the capacitated arc routing problem, Eur J Oper Res, 553, 25, 10.1016/j.ejor.2016.02.015 Chivilikhin, 2016, Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas, Autom Remote Control, 77, 473, 10.1134/S0005117916030097 Conover, 1999 Coy, 2001, Using experimental design to find effective parameter settings for heuristics, J Heuristics, 7, 77, 10.1023/A:1026569813391 Dell’Amico, 2016, A destroy and repair algorithm for the bike sharing rebalancing problem, Comput Oper Res, 71, 146, 10.1016/j.cor.2016.01.011 Dubois-Lacoste, 2011, Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework, 2019 Fawcett, 2013, Analysing differences between algorithm configurations through ablation, 123 Fisset, 2015, MO-Mineclust: a framework for multi-objective clustering, 293 Francesca, 2014, AutoMoDe: a novel approach to the automatic design of control software for robot swarms, Swarm Intell, 8, 89, 10.1007/s11721-014-0092-4 Francesca, 2015, AutoMoDe-chocolate: automatic design of control software for robot swarms, Swarm Intell, 10.1007/s11721-015-0107-9 Goldberg, 1989 Grefenstette, 1986, Optimization of control parameters for genetic algorithms, IEEE Trans Syst Man Cybern, 16, 122, 10.1109/TSMC.1986.289288 Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol Comput, 9, 159, 10.1162/106365601750190398 Herrera F., Lozano M., Molina D.. Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems. http://sci2s.ugr.es/eamhco/. 2010. Hoos, 2012, Programming by optimization, Commun ACM, 55, 70, 10.1145/2076450.2076469 Hutter, 2009, ParamILS: an automatic algorithm configuration framework, J Artif Intell Res, 36, 267, 10.1613/jair.2861 Hutter, 2010, Automated configuration of mixed integer programming solvers, 186 Hutter, 2011, Sequential model-based optimization for general algorithm configuration, 507 Hutter, 2014, AClib: a benchmark library for algorithm configuration, 36 IBM. ILOG CPLEX optimizer. http://www.ibm.com/software/integration/optimization/cplex-optimizer/. Jackson, 2011, Multi-state models for panel data: the msm package for R, J Stat Softw, 38, 1, 10.18637/jss.v038.i08 Jacquin, 2014, Dynamic programming based metaheuristic for energy planning problems., 165 Johnson, 1997, The traveling salesman problem: a case study in local optimization, 215 Johnson, 2002, Experimental analysis of heuristics for the STSP, 369 Karafotias, 2015, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans Evol Comput, 19, 167, 10.1109/TEVC.2014.2308294 KhudaBukhsh, 2009, SATenstein: automatically building local search SAT solvers from components, 517 Lacroix, 2013, Dynamically updated region based memetic algorithm for the 2013 CEC special session and competition on real parameter single objective optimization, 1945 Lacroix, 2014, Region based memetic algorithm for real-parameter optimisation, Inf Sci, 262, 15, 10.1016/j.ins.2013.11.032 Lang, 2014, Automatic model selection for high-dimensional survival analysis, J Stat Comput Simul, 85, 62, 10.1080/00949655.2014.929131 Liao, 2013, Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization, 1938 Liao, 2013, Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set, Soft Comput, 17, 1031, 10.1007/s00500-012-0946-x Liao, 2015, Performance evaluation of automatically tuned continuous optimizers on different benchmark sets, Appl Soft Comput, 27, 490, 10.1016/j.asoc.2014.11.006 López-Ibáñez, 2012, The automatic design of multi-objective ant colony optimization algorithms, IEEE Trans Evol Comput, 16, 861, 10.1109/TEVC.2011.2182651 López-Ibáñez, 2014, Automatically improving the anytime behaviour of optimisation algorithms, Eur J Oper Res, 235, 569, 10.1016/j.ejor.2013.10.043 López-Ibáñez, 2013, The travelling salesman problem with time windows: adapting algorithms from travel-time to makespan optimization, Appl Soft Comput, 13, 3806, 10.1016/j.asoc.2013.05.009 López-Ibáñez M., Dubois-Lacoste J., Pérez Cáceres L., Stützle T., Birattari M.. 2016a. The irace package: Iterated racing for automatic algorithm configuration. http://iridia.ulb.ac.be/supp/IridiaSupp2016-003/. López-Ibáñez, 2016, The irace package: user guide Marmion, 2013, Automatic design of hybrid stochastic local search algorithms, 144 Maron, 1997, The racing algorithm: model selection for lazy learners, Artif Intell Res, 11, 193, 10.1023/A:1006556606079 Mascia, 2013, Tuning algorithms for tackling large instances: an experimental protocol, 410 Mascia, 2014, Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools, Comput Oper Res, 51, 190, 10.1016/j.cor.2014.05.020 Massen, 2013, Experimental analysis of pheromone-based heuristic column generation using irace, 92 Meier J.F., Clausen U.. 2014. A versatile heuristic approach for generalized hub location problems. Preprint, Provided upon personal request. Mesquita, 2015, Parameter tuning for document image binarization using a racing algorithm, Expert Syst Appl, 42, 2593, 10.1016/j.eswa.2014.10.039 Miranda, 2014, Fine-tuning of support vector machine parameters using racing algorithms, 325 Montes de Oca, 2011, An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms, Soft Comput, 15, 2233, 10.1007/s00500-010-0649-0 Mühlenthaler, 2015 Nannen, 2006, A method for parameter calibration and relevance estimation in evolutionary algorithms, 183 Nannen, 2007, Relevance estimation and value calibration of evolutionary algorithm parameters, 975 Nashed, 2012, A comparative study of three GPU-based metaheuristics, 398 Pellegrini, 2012, A critical analysis of parameter adaptation in ant colony optimization, Swarm Intell, 6, 23, 10.1007/s11721-011-0061-0 Pellegrini, 2012, Metaheuristic algorithms for the simultaneous slot allocation problem, IET Intell Transport Syst, 6, 453, 10.1049/iet-its.2011.0179 Pérez Cáceres, 2014, An analysis of parameters of irace, 37 Powell, 2009, The BOBYQA algorithm for bound constrained optimization without derivatives Ridge, 2007, Tuning the performance of the MMAS heuristic, 46 Riff, 2013, A new algorithm for reducing metaheuristic design effort, 3283 Robert, 1995, Simulation of truncated normal variables, Stat Comput, 5, 121, 10.1007/BF00143942 Ruiz, 2005, A comprehensive review and evaluation of permutation flow-shop heuristics, Eur J Oper Res, 165, 479, 10.1016/j.ejor.2004.04.017 Samà, 2016, Ant colony optimization for the real-time train routing selection problem, Transp Res Part B, 85, 89, 10.1016/j.trb.2016.01.005 Schneider, 2012, Quantifying homogeneity of instance sets for algorithm configuration, 190 Stefanello, 2015, A biased random-key genetic algorithm for placement of virtual machines across geo-separated data centers, 919 Stützle T. ACOTSP: a software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem. 2002. http://www.aco-metaheuristic.org/aco-code/. Styles, 2013, Ordered racing protocols for automatically configuring algorithms for scaling performance, 551 Thornton, 2013, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, 847 Violin, 2014 Wessing, 2010, Parameter tuning boosts performance of variation operators in multiobjective optimization, 728 Yarimcam, 2014, Heuristic generation via parameter tuning for online bin packing, 102 Yuan, 2012, Continuous optimization algorithms for tuning real and integer algorithm parameters of swarm intelligence algorithms, Swarm Intell, 6, 49, 10.1007/s11721-011-0065-9 Yuan, 2013, An analysis of post-selection in automatic configuration, 1557 Zitzler, 2003, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans Evol Comput, 7, 117, 10.1109/TEVC.2003.810758 Zlochin, 2004, Model-based search for combinatorial optimization: acritical survey, Ann Oper Res, 131, 373, 10.1023/B:ANOR.0000039526.52305.af