The irace package: Iterated racing for automatic algorithm configuration
Tài liệu tham khảo
Acosta-Mesa, 2014, Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions, J Biomed Inform, 49, 73, 10.1016/j.jbi.2014.03.004
Adenso-Díaz, 2006, Fine-tuning of algorithms using fractional experimental design and local search, Oper Res, 54, 99, 10.1287/opre.1050.0243
Ansótegui, 2009, A gender-based genetic algorithm for the automatic configuration of algorithms, 142
Ansótegui, 2015, Model-based genetic algorithms for algorithm configuration, 733
Audet, 2006, Finding optimal algorithmic parameters using derivative-free optimization, SIAM J Optim, 17, 642, 10.1137/040620886
Audet, 2010, Algorithmic parameter optimization of the DFO method with the OPAL framework, 255
Aydın, 2015, Composite artificial bee colony algorithms: from component-based analysis to high-performing algorithms, Appl Soft Comput, 32, 266, 10.1016/j.asoc.2015.03.051
Babić, 2007, Structural abstraction of software verification conditions, 366
Babić, 2008, Spear theorem prover
Balaprakash, 2007, Improvement strategies for the F-race algorithm: sampling design and iterative refinement, 108
Bartz-Beielstein, 2006
Bartz-Beielstein, 2005, Sequential parameter optimization, 773
Battiti, 2008
Benavides, 2015, Iterated local search heuristics for minimizing total completion time in permutation and non-permutation flow shops, 34
Bezerra, 2014, Deconstructing multi-objective evolutionary algorithms: an iterative analysis on the permutation flowshop, 57
Bezerra, 2014, Automatic design of evolutionary algorithms for multi-objective combinatorial optimization, 508
Bezerra, 2016, Automatic component-wise design of multi-objective evolutionary algorithms, IEEE Trans Evol Comput, 20, 403, 10.1109/TEVC.2015.2474158
Birattari, 2003, The race package for R: racing methods for the selection of the best
Birattari, 2009
Birattari, 2002, A racing algorithm for configuring metaheuristics, 11
Birattari, 2010, F-race and iterated F-race: an overview, 311
Bischl B., Lang M., Bossek J., Judt L., Richter J., Kuehn T., et al. mlr: machine learning in R. 2013. http://cran.r-project.org/package=mlr. R package.
Blum, 2015, FrogCOL and frogMIS: new decentralized algorithms for finding large independent sets in graphs, Swarm Intell, 9, 205, 10.1007/s11721-015-0110-1
Blum, 2016, Construct, merge, solve & adapt: a new general algorithm for combinatorial optimization, Comput Oper Res, 68, 75, 10.1016/j.cor.2015.10.014
Ceschia, 2013, Local search techniques for a routing-packing problem, Comput Ind Eng, 66, 1138, 10.1016/j.cie.2013.07.025
Chen, 2016, A hybrid metaheuristic approach for the capacitated arc routing problem, Eur J Oper Res, 553, 25, 10.1016/j.ejor.2016.02.015
Chivilikhin, 2016, Modified ant colony algorithm for constructing finite state machines from execution scenarios and temporal formulas, Autom Remote Control, 77, 473, 10.1134/S0005117916030097
Conover, 1999
Coy, 2001, Using experimental design to find effective parameter settings for heuristics, J Heuristics, 7, 77, 10.1023/A:1026569813391
Dell’Amico, 2016, A destroy and repair algorithm for the bike sharing rebalancing problem, Comput Oper Res, 71, 146, 10.1016/j.cor.2016.01.011
Dubois-Lacoste, 2011, Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework, 2019
Fawcett, 2013, Analysing differences between algorithm configurations through ablation, 123
Fisset, 2015, MO-Mineclust: a framework for multi-objective clustering, 293
Francesca, 2014, AutoMoDe: a novel approach to the automatic design of control software for robot swarms, Swarm Intell, 8, 89, 10.1007/s11721-014-0092-4
Francesca, 2015, AutoMoDe-chocolate: automatic design of control software for robot swarms, Swarm Intell, 10.1007/s11721-015-0107-9
Goldberg, 1989
Grefenstette, 1986, Optimization of control parameters for genetic algorithms, IEEE Trans Syst Man Cybern, 16, 122, 10.1109/TSMC.1986.289288
Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol Comput, 9, 159, 10.1162/106365601750190398
Herrera F., Lozano M., Molina D.. Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems. http://sci2s.ugr.es/eamhco/. 2010.
Hoos, 2012, Programming by optimization, Commun ACM, 55, 70, 10.1145/2076450.2076469
Hutter, 2009, ParamILS: an automatic algorithm configuration framework, J Artif Intell Res, 36, 267, 10.1613/jair.2861
Hutter, 2010, Automated configuration of mixed integer programming solvers, 186
Hutter, 2011, Sequential model-based optimization for general algorithm configuration, 507
Hutter, 2014, AClib: a benchmark library for algorithm configuration, 36
IBM. ILOG CPLEX optimizer. http://www.ibm.com/software/integration/optimization/cplex-optimizer/.
Jackson, 2011, Multi-state models for panel data: the msm package for R, J Stat Softw, 38, 1, 10.18637/jss.v038.i08
Jacquin, 2014, Dynamic programming based metaheuristic for energy planning problems., 165
Johnson, 1997, The traveling salesman problem: a case study in local optimization, 215
Johnson, 2002, Experimental analysis of heuristics for the STSP, 369
Karafotias, 2015, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans Evol Comput, 19, 167, 10.1109/TEVC.2014.2308294
KhudaBukhsh, 2009, SATenstein: automatically building local search SAT solvers from components, 517
Lacroix, 2013, Dynamically updated region based memetic algorithm for the 2013 CEC special session and competition on real parameter single objective optimization, 1945
Lacroix, 2014, Region based memetic algorithm for real-parameter optimisation, Inf Sci, 262, 15, 10.1016/j.ins.2013.11.032
Lang, 2014, Automatic model selection for high-dimensional survival analysis, J Stat Comput Simul, 85, 62, 10.1080/00949655.2014.929131
Liao, 2013, Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization, 1938
Liao, 2013, Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set, Soft Comput, 17, 1031, 10.1007/s00500-012-0946-x
Liao, 2015, Performance evaluation of automatically tuned continuous optimizers on different benchmark sets, Appl Soft Comput, 27, 490, 10.1016/j.asoc.2014.11.006
López-Ibáñez, 2012, The automatic design of multi-objective ant colony optimization algorithms, IEEE Trans Evol Comput, 16, 861, 10.1109/TEVC.2011.2182651
López-Ibáñez, 2014, Automatically improving the anytime behaviour of optimisation algorithms, Eur J Oper Res, 235, 569, 10.1016/j.ejor.2013.10.043
López-Ibáñez, 2013, The travelling salesman problem with time windows: adapting algorithms from travel-time to makespan optimization, Appl Soft Comput, 13, 3806, 10.1016/j.asoc.2013.05.009
López-Ibáñez M., Dubois-Lacoste J., Pérez Cáceres L., Stützle T., Birattari M.. 2016a. The irace package: Iterated racing for automatic algorithm configuration. http://iridia.ulb.ac.be/supp/IridiaSupp2016-003/.
López-Ibáñez, 2016, The irace package: user guide
Marmion, 2013, Automatic design of hybrid stochastic local search algorithms, 144
Maron, 1997, The racing algorithm: model selection for lazy learners, Artif Intell Res, 11, 193, 10.1023/A:1006556606079
Mascia, 2013, Tuning algorithms for tackling large instances: an experimental protocol, 410
Mascia, 2014, Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools, Comput Oper Res, 51, 190, 10.1016/j.cor.2014.05.020
Massen, 2013, Experimental analysis of pheromone-based heuristic column generation using irace, 92
Meier J.F., Clausen U.. 2014. A versatile heuristic approach for generalized hub location problems. Preprint, Provided upon personal request.
Mesquita, 2015, Parameter tuning for document image binarization using a racing algorithm, Expert Syst Appl, 42, 2593, 10.1016/j.eswa.2014.10.039
Miranda, 2014, Fine-tuning of support vector machine parameters using racing algorithms, 325
Montes de Oca, 2011, An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms, Soft Comput, 15, 2233, 10.1007/s00500-010-0649-0
Mühlenthaler, 2015
Nannen, 2006, A method for parameter calibration and relevance estimation in evolutionary algorithms, 183
Nannen, 2007, Relevance estimation and value calibration of evolutionary algorithm parameters, 975
Nashed, 2012, A comparative study of three GPU-based metaheuristics, 398
Pellegrini, 2012, A critical analysis of parameter adaptation in ant colony optimization, Swarm Intell, 6, 23, 10.1007/s11721-011-0061-0
Pellegrini, 2012, Metaheuristic algorithms for the simultaneous slot allocation problem, IET Intell Transport Syst, 6, 453, 10.1049/iet-its.2011.0179
Pérez Cáceres, 2014, An analysis of parameters of irace, 37
Powell, 2009, The BOBYQA algorithm for bound constrained optimization without derivatives
Ridge, 2007, Tuning the performance of the MMAS heuristic, 46
Riff, 2013, A new algorithm for reducing metaheuristic design effort, 3283
Robert, 1995, Simulation of truncated normal variables, Stat Comput, 5, 121, 10.1007/BF00143942
Ruiz, 2005, A comprehensive review and evaluation of permutation flow-shop heuristics, Eur J Oper Res, 165, 479, 10.1016/j.ejor.2004.04.017
Samà, 2016, Ant colony optimization for the real-time train routing selection problem, Transp Res Part B, 85, 89, 10.1016/j.trb.2016.01.005
Schneider, 2012, Quantifying homogeneity of instance sets for algorithm configuration, 190
Stefanello, 2015, A biased random-key genetic algorithm for placement of virtual machines across geo-separated data centers, 919
Stützle T. ACOTSP: a software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem. 2002. http://www.aco-metaheuristic.org/aco-code/.
Styles, 2013, Ordered racing protocols for automatically configuring algorithms for scaling performance, 551
Thornton, 2013, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, 847
Violin, 2014
Wessing, 2010, Parameter tuning boosts performance of variation operators in multiobjective optimization, 728
Yarimcam, 2014, Heuristic generation via parameter tuning for online bin packing, 102
Yuan, 2012, Continuous optimization algorithms for tuning real and integer algorithm parameters of swarm intelligence algorithms, Swarm Intell, 6, 49, 10.1007/s11721-011-0065-9
Yuan, 2013, An analysis of post-selection in automatic configuration, 1557
Zitzler, 2003, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans Evol Comput, 7, 117, 10.1109/TEVC.2003.810758
Zlochin, 2004, Model-based search for combinatorial optimization: acritical survey, Ann Oper Res, 131, 373, 10.1023/B:ANOR.0000039526.52305.af