Lattice Boltzmann model for a class of convection–diffusion equations with variable coefficients

Computers & Mathematics with Applications - Tập 70 - Trang 548-561 - 2015
Qianhuan Li1, Zhenhua Chai1, Baochang Shi1
1School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China

Tài liệu tham khảo

Brezis, 1998, Partial differential equations in the 20th century, Adv. Math., 135, 76, 10.1006/aima.1997.1713 Wazwaz, 2002 Cockburn, 1998, The lacal difcontinuous Galerkin method for time-dependent convection–diffusion systems, SIAM J. Numer. Anal., 35, 2440, 10.1137/S0036142997316712 Baligaa, 1980, A new finite-element formulation for convection–diffusion problems, Numer. Heat Transfer, 3, 393, 10.1080/01495728008961767 Gupta, 1984, A single cell high order scheme for the convection–diffusion equation with variable coefficients, Int. J. Numer. Methods Fluids, 4, 641, 10.1002/fld.1650040704 Kalita, 2002, A class of higher order compact schemes for the unsteady two-dimensional convectionCdiffusion equation with variable convection coefficients, Int. J. Numer. Methods Fluids, 38, 1111, 10.1002/fld.263 Angelini, 2013, A finite volume method on general meshes for a degenerate parabolic convection-reaction–diffusion equation, Numer. Math., 123, 219, 10.1007/s00211-012-0485-5 Benzi, 1992, The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 145, 10.1016/0370-1573(92)90090-M Zhang, 2011, Lattice Boltzmann method for microfluidics: models and applications, Microfluid. Nanofluid., 10, 1, 10.1007/s10404-010-0624-1 Inamuro, 2004, A lattice Boltzmann method for imcompressible two-phase flows with large density differences, J. Comput. Phys., 198, 628, 10.1016/j.jcp.2004.01.019 Swift, 1996, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5041, 10.1103/PhysRevE.54.5041 Alexander, 1993, Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47, R2249, 10.1103/PhysRevE.47.R2249 Chai, 2007, Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method, Phys. Lett. A, 364, 183, 10.1016/j.physleta.2006.12.006 Dawson, 1993, Lattice Boltzmann computations for reaction–diffusion equations, J. Chem. Phys., 98, 1514, 10.1063/1.464316 Chopard, 2009, The lattice Boltzmann advection–diffusion model revisited, Eur. Phys. J. Spec. Top., 171, 245, 10.1140/epjst/e2009-01035-5 Shi, 2009, Lattice Boltzmann model for nonlinear convection–diffusion equations, Phys. Rev. E, 79, 016701, 10.1103/PhysRevE.79.016701 Ginzburg, 2005, Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Resour., 28, 1171, 10.1016/j.advwatres.2005.03.004 Chai, 2013, Lattice Boltzmann model for the convection–diffusion equation, Phys. Rev. E, 87, 063309, 10.1103/PhysRevE.87.063309 Xiang, 2012, Modified lattice Boltzmann scheme for nonlinear convection diffusion equations, Int. J. Nonlinear Sci. Numer. Simul., 17, 2415, 10.1016/j.cnsns.2011.09.036 Shi, 2009, Lattice Boltzmann model for high-order nonlinear partial differential equations, Phys. Comp., 10 Wu, 2012, A lattice Boltzmann model for the Fokker–Planck equation, Commun. Nonlinear Sci. Numer. Simul., 17, 2776, 10.1016/j.cnsns.2011.11.032 Guo, 2002, Non-equilibrium extrapolation method for velocity and pressure boundary conditionsin the lattice Boltzmann method, Chin. Phys., 11, 366, 10.1088/1009-1963/11/4/310