Asymmetry of strain rate sensitivity between up- and down-changes in 6000 series aluminium alloys of varying Si content
Tài liệu tham khảo
Hirsch, 2004, Automotive trends in aluminium-The European perspective, Mater. Forum, 28, 15
Hirsch, 2014, Recent development in aluminium for automotive applications, Trans. Nonferrous Metals Soc. China, 24, 1995, 10.1016/S1003-6326(14)63305-7
Considère, 1885, vol. 1
Ghosh, 1977, The influence of strain hardening and strain-rate sensitivity on sheet metal forming, J. Eng. Mater. Technol., 99, 264, 10.1115/1.3443530
Neale, 1980, Limit strain predictions for strain-rate sensitive anisotropic sheets, Int. J. Mech. Sci., 22, 563, 10.1016/0020-7403(80)90018-1
Ghosh, 1977, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metall., 25, 1413, 10.1016/0001-6160(77)90072-4
Diak, 1995, Role of strain rate sensitivity on diffuse necking, 5
J. W. Hutchinson and K. W. Neale, ‘Sheet Necking-III. Strain-Rate Effects’, p. 17.
Hutchinson, 1977, Influence of strain-rate sensitivity on necking under uniaxial tension, Acta Metall., 25, 839, 10.1016/0001-6160(77)90168-7
Hart, 1967, Theory of the tensile test, Acta Metall., 15, 351, 10.1016/0001-6160(67)90211-8
Wang, 2004, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A, 375, 46, 10.1016/j.msea.2003.10.214
Chibane, 2017, On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys, Scripta Mater., 130, 252, 10.1016/j.scriptamat.2016.11.037
Esmaeili, 2001, The deformation behaviour of AA6111 as a function of temperature and precipitation state, Mater. Sci. Eng. A, 319, 461, 10.1016/S0921-5093(01)01113-3
Diak, 1998, Characterization of thermodynamic response by materials testing, Prog. Mater. Sci., 43, 223, 10.1016/S0079-6425(98)00007-3
Curtin, 2010, New interpretation of the Haasen plot for solute-strengthened alloys, Scripta Mater., 63, 917, 10.1016/j.scriptamat.2010.07.003
P. S. Bate, ‘The effects of combined strain-path and strain-rate changes in aluminum’, Metall. Trans. A, p. 11.
Picu, 2010, Aluminum alloys with identical plastic flow and different strain rate sensitivity, Metall. Mater. Trans. A, 41, 3358, 10.1007/s11661-010-0423-z
Carlone, 1996, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech., 36, 360, 10.1007/BF02328579
Gupta, 2017, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: experiments and constitutive modeling, Mater. Sci. Eng. A, 683, 143, 10.1016/j.msea.2016.12.010
Diak, 1997
Niewczas, 2015, Thermally activated flow of dislocations in Al–Mg binary alloys, Acta Mater., 83, 372, 10.1016/j.actamat.2014.09.056
Ding, 2015, The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions, Mater. Sci. Eng. A, 627, 119, 10.1016/j.msea.2014.12.086
Murayama, 2001, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metall. Mater. Trans. A, 32, 239, 10.1007/s11661-001-0254-z
Weng, 2017, Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys, J. Alloys Compd., 695, 2444, 10.1016/j.jallcom.2016.11.140
Zandbergen, 2015, Study of precipitation in Al–Mg–Si Alloys by atom probe tomography II. Influence of Cu additions, Acta Mater., 101, 149, 10.1016/j.actamat.2015.08.018
Langille, 2019, Understanding the role of Cu and clustering on strain hardening and strain rate sensitivity of Al-Mg-Si-Cu alloys, Light Met., 2019, 143
Nabarro, 1990, Cottrell-Stokes law and activation theory, Acta Metall. Mater., 38, 161, 10.1016/0956-7151(90)90044-H
Picu, 2010, ‘On the relationship between the Cottrell–Stokes law and the Haasen plot’, Mater. Sci. Eng. A, 527, 5303, 10.1016/j.msea.2010.04.093
Saimoto, 2006, ‘Dynamic dislocation–defect analysis’, Philos. Mag., 86, 4213, 10.1080/14786430500367347
Cottrell, 1955, Effects of temperature on the plastic properties of aluminium crystals, Proc. R. Soc. Math. Phys. Eng. Sci., 233, 17
Saimoto, 1983, A re-examination of the cottrell-Stokes relation based on precision measurements of the activation volume, Acta Metall., 31, 1873, 10.1016/0001-6160(83)90133-5
Saimoto, 2009, Kinetic analysis of dynamic point defect pinning in aluminium initiated by strain rate changes, Philos. Mag., 89, 853, 10.1080/14786430902791730
Klepaczko, 1986, On rate sensitivity of f.c.c. metals, instantaneous rate sensitivity and rate sensitivity of strain hardening, J. Mech. Phys. Solid., 34, 29, 10.1016/0022-5096(86)90004-9
Haasen, 1958, Plastic deformation of nickel single crystals at low temperatures, Philos. Mag., 3, 384, 10.1080/14786435808236826
Starink, 2003, ‘A model for the yield strength of overaged Al–Zn–Mg–Cu alloys’, Acta Mater., 51, 5131, 10.1016/S1359-6454(03)00363-X
Hornbogen, 1993, Overview no. 102 Theory assisted design of high strength low alloy aluminum, Acta Metall. Mater., 41, 1, 10.1016/0956-7151(93)90334-O
Wong, 1993, Superposition of thermal activation processes in quenched aluminum-1.7 at% copper, Scripta Metall. Mater., 29, 341, 10.1016/0956-716X(93)90510-Y
Wang, 2006, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, 37, 2691, 10.1007/BF02586103
Esmaeili, 2005, Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique, Mater. Char., 55, 307, 10.1016/j.matchar.2005.07.007
Fallah, 2016, ‘Cluster evolution mechanisms during aging in Al–Mg–Si alloys’, Acta Mater., 103, 290, 10.1016/j.actamat.2015.09.027
Fallah, 2015, ‘Atomic-scale pathway of early-stage precipitation in Al–Mg–Si alloys’, Acta Mater., 82, 457, 10.1016/j.actamat.2014.09.004
Aruga, 2016, ‘Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy’, Scripta Mater., 116, 82, 10.1016/j.scriptamat.2016.01.019
Kim, 2011, Effects of Cu addition on behavior of nanoclusters during multi-step aging in Al-Mg-Si alloys, Mater. Trans., 52, 906, 10.2320/matertrans.L-MZ201121
Kim, 2013, ‘Formation behavior of nanoclusters in Al–Mg–Si alloys with different Mg and Si concentration’, Mater. Trans., 54, 297, 10.2320/matertrans.MBW201208
Tao, 2015, ‘The influence of Mg/Si ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys’, Mater. Sci. Eng. A, 642, 241, 10.1016/j.msea.2015.06.090
Cao, 2013, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A, Mater. Sci. Eng. A, 571, 77, 10.1016/j.msea.2013.01.065
Yin, 2016, ‘Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy’, Mater. Des., 95, 329, 10.1016/j.matdes.2016.01.119
Ling, 1993, The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy, Acta Metall. Mater., 41, 3127, 10.1016/0956-7151(93)90042-Q
Ling, 1990, Strain rate sensitivity and transient behaviour in an Al-Mg-Si alloy, Acta Metall. Mater., 38, 2631, 10.1016/0956-7151(90)90275-L
Chen, 2013, The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys, Acta Mater., 61, 5877, 10.1016/j.actamat.2013.06.036
Saimoto, 1984, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall., 32, 147, 10.1016/0001-6160(84)90212-8
Niewczas, 2002, Transmission electron microscopy observations of debris structure in deformed copper single crystals, Philos. Mag. A, 82, 393, 10.1080/01418610208239607
Niewczas, 2017, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Eng. A, 706, 256, 10.1016/j.msea.2017.09.003