An operadic approach to vertex algebra and Poisson vertex algebra cohomology

Japanese Journal of Mathematics - Tập 14 - Trang 249-342 - 2019
Bojko Bakalov1, Alberto De Sole2, Reimundo Heluani3, Victor G. Kac4
1Department of Mathematics, North Carolina State University, Raleigh, USA
2Dipartimento di Matematica, Sapienza Università di Roma, Rome, Italy
3IMPA, Estrada Dona Castorina, Rio de Janeiro, Brasil
4Department of Mathematics, MIT, Cambridge, USA

Tóm tắt

We translate the construction of the chiral operad by Beilinson and Drinfeld to the purely algebraic language of vertex algebras. Consequently, the general construction of a cohomology complex associated to a linear operad produces the vertex algebra cohomology complex. Likewise, the associated graded of the chiral operad leads to the classical operad, which produces a Poisson vertex algebra cohomology complex. The latter is closely related to the variational Poisson cohomology studied by two of the authors.

Tài liệu tham khảo

B. Bakalov, A. D’Andrea and V.G. Kac, Theory of finite pseudoalgebras, Adv. Math., 162 (2001), 1–140. B. Bakalov, A. De Sole, R. Heluani and V.G. Kac, Chiral vs classical operad, preprint, arXiv:1812.05972. B. Bakalov, A. De Sole, R. Heluani, V.G. Kac and V. Vignoli, Classical and variational Poisson cohomology, in preparation. B. Bakalov, A. De Sole and V.G. Kac, Computation of cohomology of Lie con-formal and Poisson vertex algebras, preprint, arXiv:1903.12059. B. Bakalov, V.G. Kac and A.A. Voronov, Cohomology of conformal algebras, Comm. Math. Phys., 200 (1999), 561–598. A. Bapat and R. Walters, The Bernstein–Sato b-function of the Vandermonde determinant, preprint, arXiv:1503.01055. A. Barakat, A. De Sole and V.G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math., 4 (2009), 141–252. A. Beilinson and V. Drinfeld, Chiral Algebras, Amer. Math. Soc. Colloq. Publ., 51, Amer. Math. Soc., Providence, RI, 2004. R.E. Borcherds, Vertex algebras, Kac–Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068–3071. R.E. Borcherds, Vertex algebras, In: Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996, Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, pp. 35–77. F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices, 2001 (2001), 395–408. A. De Sole and V.G. Kac, Finite vs affine Walgebras, Jpn. J. Math., 1 (2006), 137–261. A. De Sole and V.G. Kac, Lie conformal algebra cohomology and the variational complex, Comm. Math. Phys., 292 (2009), 667–719. A. De Sole and V.G. Kac, Essential variational Poisson cohomology, Comm. Math. Phys., 313 (2012), 837–864. A. De Sole and V.G. Kac, The variational Poisson cohomology, Jpn. J. Math., 8 (2013), 1–145. E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves. Second ed., Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2004. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2), 78 (1963), 267–288. V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203–272. Y.-Z. Huang, A cohomology theory of grading-restricted vertex algebras, Comm. Math. Phys., 327 (2014), 279–307. V.G. Kac, Vertex Algebras for Beginners. Second ed., Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998. J.I. Liberati, Cohomology of vertex algebras, J. Algebra, 472 (2017), 259–272. J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren Math. Wiss., 346, Springer-Verlag, 2012. M. Markl, Distributive laws and Koszulness, Ann. Inst. Fourier (Grenoble), 46 (1996), 307–323. M. Markl, S. Shnider and J. Stasheff, Operads in Algebra, Topology and Physics, Math. Surveys Monogr., 96, Amer. Math. Soc., Providence, RI, 2002. A. Nijenhuis and R.W. Richardson, Jr., Deformations of Lie algebra structures, J. Math. Mech., 17 (1967), 89–105. D. Tamarkin, Deformations of chiral algebras, In: Proc. of the International Congress of Mathematicians. Vol. II, Beijing, 2002, Higher Ed. Press, Beijing, pp. 105–116. S. Yanagida, Deformation quantization of vertex Poisson algebras, preprint, arxiv:1607.02068.