Yield behaviour of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres

Composites Science and Technology - Tập 70 - Trang 525-529 - 2010
Elodie Hablot1, Rodrigue Matadi2, Said Ahzi2, Regis Vaudemond3, David Ruch3, Luc Avérous1
1Laboratoire d’Ingénierie des Polymères pour les Hautes Technologies, ECPM-LIPHT, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France
2Institut de Mécanique des Fluides et des Solides, IMFS Université de Strasbourg, 2 rue Boussingault, 67000 Strasbourg, France
3Laboratoire de Technologies Industrielles, Centre de Recherche Public Henri Tudor, 66 rue du Luxembourg, 4002 Esch/Alzette, Luxembourg

Tài liệu tham khảo

Biermann, 2000, New syntheses with oils and fats as renewable raw materials for the chemical industry, Angew Chem Int Ed, 39, 2207, 10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P Guner, 2006, Polymers from triglyceride oils, Prog Polym Sci, 31, 633, 10.1016/j.progpolymsci.2006.07.001 Khot, 2001, Development and application of triglyceride-based polymers and composites, J Appl Polym Sci, 82, 703, 10.1002/app.1897 Meier, 2007, Plant oil renewable resources as green alternatives in polymer science, Chem Soc Rev, 36, 1788, 10.1039/b703294c Nayak, 2000, Natural oil-based polymers: opportunities and challenges, J Macromol Sci, Rev Macromol Chem Phys, C40, 1, 10.1081/MC-100100576 Cavus, 2006, Influence of monofunctional reactants on the physical properties of dimer acid-based polyamides, Polym Adv Technol, 17, 30, 10.1002/pat.694 Fan, 1998, Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides, J Appl Polym Sci, 68, 305, 10.1002/(SICI)1097-4628(19980411)68:2<305::AID-APP12>3.0.CO;2-W Hablot E, Donnio B, Bouquey M, Avérous L. Dimer acid-based thermoplastic bio-polyamides: kinetics, thermal, physical and mechanical properties. Biomacromol 2010, in press. Brandrup, 1999 Bledzki, 1999, Composites reinforced with cellulose based fibres, Prog Polym Sci, 24, 221, 10.1016/S0079-6700(98)00018-5 Eichhorn, 2001, Review: current international research into cellulosic fibres and composites, J Mater Sci, 36, 2107, 10.1023/A:1017512029696 Hablot, 2010, Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties, Comp Sci Tech, 70, 504, 10.1016/j.compscitech.2009.12.001 Amash, 2000, Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites, Polymer, 41, 1589, 10.1016/S0032-3861(99)00273-6 Bauwens-Crowet, 1969, Tensile yield-stress behavior of glassy polymers, J Polym Sci: Part A-2, 7, 735, 10.1002/pol.1969.160070411 Robertson, 1966, Theory for the plasticity of glassy polymers, J Chem Phys, 44, 3950, 10.1063/1.1726558 Roetling, 1965, Yield stress behaviour of polymethylmethacrylate, Polymer, 6, 311, 10.1016/0032-3861(65)90081-9 Richeton, 2005, A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures, Polymer, 46, 6035, 10.1016/j.polymer.2005.05.079 Llana, 1999, Finite strain behavior of poly(ethylene terephthalate) above the glass transition temperature, Polymer, 40, 6729, 10.1016/S0032-3861(98)00867-2 Chivrac, 2008, Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites, Acta Biomater, 4, 1707, 10.1016/j.actbio.2008.05.002 Gueguen, 2008, Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers, Acta Mater, 56, 1650, 10.1016/j.actamat.2007.12.015 Takyanagi, 1964, Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer, J Polym Sci: Part C, 5, 113, 10.1002/polc.5070050111