Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities
Tài liệu tham khảo
Abinandan, 2015, Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review, Renew. Sustain. Energy Rev., 52, 123, 10.1016/j.rser.2015.07.086
AHDB, 2017. Nutrient Management Guide (RB209). Section 2: Organic Materials. Agriculture and Horticulture Development Board (AHDB), Warwickshire.
AHDB, 2018. UK Fertiliser Price Series, May 2018 report. Available at: https://ahdb.org.uk/documents/UK_Fertiliser_Price_Series_report-May2018.pdf.
Barry, 2016
Becker, 2007, Micro-algae as a source of protein, Biotechnol. Adv., 25, 207, 10.1016/j.biotechadv.2006.11.002
Blake, C., Lupatsch, I., 2012. Nutritional assessment of algae-based feeds for tilapia in intensive aquaculture. In: Proceedings of the Europe Aquaculture Society Conference, Prague, Czech Republic.
BORRG (Bioenergy and Organic Resources Research Group, University of Southampton) (2015). Anaerobic Digestion Assessment Tool (ADAT), Version 2 dated 4 July 2015. Available at: http://www.bioenergy.soton.ac.uk/AD_software_tool.htm.
Budzianowski, 2016, A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment, Renew. Sustain. Energy Rev., 54, 1148, 10.1016/j.rser.2015.10.054
Burr, 2011, Apparent digestibility of macro-nutrients and phosphorus in plant-derived ingredients for Atlantic salmon, Salmo salar and Arctic charr, Salvelinus alpinus., Aquaculture Nutrition, 17, 570, 10.1111/j.1365-2095.2011.00855.x
Cardinaletti, 2018, Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil, Aquaculture, 485, 173, 10.1016/j.aquaculture.2017.11.049
Carpenter, 1998, Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl., 8, 559, 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Chadwick, 2011, Manure management: implications for greenhouse gas emissions, Anim. Feed Sci. Technol., 166, 514, 10.1016/j.anifeedsci.2011.04.036
Cho, 2013, Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources, Bioresour. Technol., 131, 515, 10.1016/j.biortech.2012.12.176
Choubert, 1993, Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin, Aquaculture, 112, 217, 10.1016/0044-8486(93)90447-7
Coelho, 2018, Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates, Waste Manage. (Oxford), 78, 8, 10.1016/j.wasman.2018.05.017
Commichau, 2006, Regulatory links between carbon and nitrogen metabolism, Current Opinion Microbiol., 9, 167, 10.1016/j.mib.2006.01.001
Cordell, 2009, The story of phosphorus: Global food security and food for thought, Global Environ. Change, 19, 292, 10.1016/j.gloenvcha.2008.10.009
de Visser, 2014, The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives, Ocl, 21, D407, 10.1051/ocl/2014021
Ebrahim, 2013, COBRApy: constraints-based reconstruction and analysis for python, BMC Syst. Biol., 7, 74, 10.1186/1752-0509-7-74
Ekvall, 2004, System boundaries and input data in consequential life cycle inventory analysis, Int. J. Life Cycle Assess., 9, 161, 10.1007/BF02994190
Erisman, 2008, Agricultural air quality in Europe and the future perspectives, Atmos. Environ., 42, 3209, 10.1016/j.atmosenv.2007.04.004
Farazi, 2018, Ontology-based faceted semantic search with automatic sense disambiguation for bioenergy domain, Int. J. Big Data Intelligence, 5, 62, 10.1504/IJBDI.2018.088286
Fait, 2018, Metabolomics approaches to advance understanding of nitrogen assimilation and carbon–nitrogen interactions, Ann. Plant Rev., 249, 10.1002/9781119312994.apr0457
Fedorniak, 2017
Fenton, 2012, Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review, Algal Research, 1, 49, 10.1016/j.algal.2012.03.003
Finkbeiner, 2006, The new international standards for life cycle assessment: ISO 14040 and ISO 14044, Int. J. Life Cycle Assess., 11, 80, 10.1065/lca2006.02.002
Fishman, 2010
FNR, 2012. Guide to Biogas: From production to use, Gülzow. Available from: https://mediathek.fnr.de/media/downloadable/files/samples/g/u/guide_biogas_engl_2012.pdf. Accessed June 14, 2017.
Fuchs, W., Drosg, B., 2010. Technologiebewertung von Gärrestbehandlungs- und Verwertungskonzepten, Universität für Bodenkultur. Wien. ISBN 3900962863, 9783900962869.
Gao, 2011, Using thermophilic anaerobic digestate effluent to replace freshwater for bioethanol production, Bioresour. Technol., 102, 2126, 10.1016/j.biortech.2010.08.088
Gasparri, 2013, Linkages between soybean and neotropical deforestation: coupling and transient decoupling dynamics in a multi-decadal analysis, Global Environ. Change, 23, 1605, 10.1016/j.gloenvcha.2013.09.007
Gbadamosi, 2018, Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus, Algal Research, 33, 48, 10.1016/j.algal.2018.04.030
Gerardo, 2014, Integration of membrane technology in microalgae biorefineries, J. Membr. Sci., 464, 86, 10.1016/j.memsci.2014.04.010
Gerardo, 2013, Strategies for the recovery of nutrients and metals from anaerobically digested dairy farm sludge using cross-flow microfiltration, Water Res., 47, 4833, 10.1016/j.watres.2013.04.019
Gonçalves, 2017, A review on the use of microalgal consortia for wastewater treatment, Algal Res., 24, 403, 10.1016/j.algal.2016.11.008
González-Fernández, 2010, Nitrogen transformations under different conditions in open ponds by means of microalgae–bacteria consortium treating pig slurry, Bioresour. Technol., 102, 960, 10.1016/j.biortech.2010.09.052
Gouveia, 2002, Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga, Aquac. Res., 33, 987, 10.1046/j.1365-2109.2002.00751.x
Hanserud, 2017, Redistributing phosphorus in animal manure from a livestock-intensive region to an arable region: exploration of environmental consequences, Sustainability, 9, 595, 10.3390/su9040595
Hopkins, 2007, Implications of climate change for grassland in Europe: impacts, adaptations and mitigation options: a review, Grass Forage Sci., 62, 118, 10.1111/j.1365-2494.2007.00575.x
Janczyk, 2007, Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats, Animal Feed Sci. Technol., 132, 163, 10.1016/j.anifeedsci.2006.03.007
Kang, 2018, Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light, International Biodeteriotation Biodegradation, 126, 10, 10.1016/j.ibiod.2017.09.022
Kerckhof, 2014, Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity, PLoS One, 9, e99517, 10.1371/journal.pone.0099517
Kousoulaki, 2016, Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.), Aquaculture, 451, 47, 10.1016/j.aquaculture.2015.08.027
Kumi, 2016, Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge, Water Res., 100, 267, 10.1016/j.watres.2016.05.030
Lahel, 2016, Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia, Int. Biodeter. Biodegrad., 113, 375, 10.1016/j.ibiod.2016.05.005
Levine, 2011, Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production, Biomass Bioenergy, 35, 40, 10.1016/j.biombioe.2010.08.035
Lukehurst, 2010, Utilisation of digestate from biogas plants as biofertiliser, IEA Bioenergy, 1
Lulacat, 1984, Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79, Biotechnol. Bioeng., 26, 677, 10.1002/bit.260260707
Mahapatra, 2014, Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater, Biores. Technol., 168, 142, 10.1016/j.biortech.2014.03.130
Marcato, 2008, Particle size and metal distributions in anaerobically digested pig slurry, Bioresour. Technol., 99, 2340, 10.1016/j.biortech.2007.05.013
Mata, 2010, Microalgae for biodiesel production and other applications: a review, Renew. Sustain. Energy Rev., 14, 217, 10.1016/j.rser.2009.07.020
Mayhead, 2018, Comparing nutrient removal from membrane filtered and unfiltered domestic wastewater using Chlorella vulgaris, Biology, 7, 12, 10.3390/biology7010012
Medina, 2007, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55, 165, 10.2166/wst.2007.351
Mezzari, 2013, Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate, Bioresour. Technol., 149, 327, 10.1016/j.biortech.2013.09.065
Michiels, 2012, Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets: effects on performance, gut bacteria and morphology and plasma oxidative status, J. Animal Physiol. Animal Nutrition, 96, 1101, 10.1111/j.1439-0396.2011.01227.x
Misselbrook, T.H., Chadwick, D.R., Gilhespy, S.L., Chambers, B.J., Smith, K.A., Williams, J., Dragosits, U., 2010. Inventory of ammonia emissions from UK agriculture 2009. Defra Contract AC0112.
Möller, 2015, Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review, Agronomy Sustainable Develop., 35, 1021, 10.1007/s13593-015-0284-3
Möller, 2012, Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review, Eng. Life Sci., 12, 242, 10.1002/elsc.201100085
Monson, K.D., Esteves, S.R., Guwy, A.J., Dinsdale, R.M., 2007. Anaerobic Digestion of Biodegradable Municipal Wastes – A Review, University of Glamorgan ISBN 978-1-84054-156-5.
Mulbry, 2005, Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 96, 451, 10.1016/j.biortech.2004.05.026
Nakagawa, 1997, Effect of dietary algae on improvement of lipid metabolism in fish, Biomed. Pharmacother., 51, 345, 10.1016/S0753-3322(97)88053-5
Nath, 2012, Dietary supplementation with the microalgae Parietochloris incisa increases survival and stress resistance in guppy (Poecilia reticulata) fry, Aquac. Nutr., 18, 167, 10.1111/j.1365-2095.2011.00885.x
National Non-Food Crops Centre (NNFCC), 2010. Anaerobic Digestion Economic Assessment Tool, Version 2.2 dated July 2010. Available at: http://www.nnfcc.co.uk/publications/tool-ad-cost-calculator.
Nicholson, 2013, An enhanced software tool to support better use of manure nutrients: MANNER-NPK, Soil Use Manag., 29, 473, 10.1111/sum.12078
Nkoa, 2014, Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review, Agron. Sustainable Dev., 34, 473, 10.1007/s13593-013-0196-z
Oliveira, 2016, The potential use of shear viscosity to monitor polymer conditioning of sewage sludge digestates, Water Res., 105, 320, 10.1016/j.watres.2016.08.007
Orth, 2010, What is flux balance analysis?, Nat. Biotechnol., 28, 245, 10.1038/nbt.1614
Osborne, 2013, Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation, Agric. For. Meteorol., 170, 183, 10.1016/j.agrformet.2012.07.006
Oswald, 1953, Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation, Sewage Ind. Wastes, 25, 692
Passanha, 2013, Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors, Bioresour. Technol., 147, 345, 10.1016/j.biortech.2013.08.050
Perez-Garcia, 2011, Heterotrophic cultures of microalgae: metabolism and potential products, Water Res., 45, 11, 10.1016/j.watres.2010.08.037
Provenzano, 2011, Qualitative characterization and differentiation of digestates from different biowastes using FTIR and fluorescence spectroscopies, J. Environ. Protection, 2, 83, 10.4236/jep.2011.21009
Rehl, 2011, Life cycle assessment of biogas digestate processing technologies, Resour. Conserv. Recycl., 56, 92, 10.1016/j.resconrec.2011.08.007
Rodhe, 2015, Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry, Agric. Ecosyst. Environ., 199, 358, 10.1016/j.agee.2014.10.004
Scaglia, 2017, The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property, Sci. Total Environ., 589, 36, 10.1016/j.scitotenv.2017.02.223
Schipper, 2014, Phosphorus: too Big to Fail, Eur. J. Inorg. Chem., 2014, 1567, 10.1002/ejic.201400115
Schlarb-Ridley, B., Parker, B., 2013. A UK roadmap for algal technologies. Report for the National Environmental Research Council (NERC) Technology Strategy Board (TSB) Algal Bioenergy-Special Interest Group (AB-SIG).
Sharma, 2012, Role of algae and cyanobacteria in sustainable agriculture system, Wudpecker J. Agric. Res, 1, 381
Sheeman, J., Dunahay T., Benemann, J., Roessler, P., 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae. National Renewable Energy Laboratory. NREL/TP-580-24190.
Sheikhzadeh, 2012, Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss), Fish Physiol. Biochem., 38, 413, 10.1007/s10695-011-9519-7
Sigurnjak, 2017, Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years, Sci. Total Environ., 599, 1885, 10.1016/j.scitotenv.2017.05.120
Silkina, 2017, Formulation and utilisation of spent anaerobic digestate fluids for the growth and product formation of single cell algal cultures in heterotrophic and autotrophic conditions, Bioresour. Technol., 244, 1445, 10.1016/j.biortech.2017.05.133
Singh, 2017, Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects, Fronti. Microbiol., 8, 515, 10.3389/fmicb.2017.00515
Sivakumar, 2012, Integrated green algal technology for bioremediation and biofuel, Bioresour. Technol., 107, 1, 10.1016/j.biortech.2011.12.091
Skrede, 2011, Evaluation of microalgae as sources of digestible nutrients for monogastric animals, J. Animal Feed Sci., 20, 10.22358/jafs/66164/2011
Smith, 2001, Nutrient losses by surface run-off following the application of organic manures to arable land. 1. Nitrogen, Environ. Pollut., 112, 41, 10.1016/S0269-7491(00)00097-X
Smith, 2001, Nutrient losses by surface run-off following the application of organic manures to arable land. 2. Phosphorus, Environ. Pollut., 112, 53, 10.1016/S0269-7491(00)00098-1
Spolaore, 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87, 10.1263/jbb.101.87
Sprague, 2015, Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts, Food Chem., 185, 413, 10.1016/j.foodchem.2015.03.150
Steffen, 2015, Planetary boundaries: Guiding human development on a changing planet, Science, 347, 1259855, 10.1126/science.1259855
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., de Haan, C., 2007. Livestock’s long shadow. Environmental issues and options. FAO, Rom.
Styles, 2018, Climate mitigation by dairy intensification depends on intensive use of spared grassland, Global Change Biol., 24, 681, 10.1111/gcb.13868
Styles, 2016, Environmental balance of the of the UK biogas sector: an evaluation by consequential life cycle assessment, Sci. Total Environ., 560–561, 241, 10.1016/j.scitotenv.2016.03.236
Styles, 2018, Life cycle assessment of biofertilizer production and use compared with conventional liquid digestate management, Environ. Sci. Technol., 10.1021/acs.est.8b01619
Suganya, 2016, Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach, Renew. Sustain. Energy Rev., 55, 909, 10.1016/j.rser.2015.11.026
Sutton, 2011, Too much of a good thing, Nature, 472, 159, 10.1038/472159a
Tilman, 2014, Global diets link environmental sustainability and human health, Nature, 515, 518, 10.1038/nature13959
Tonini, 2012, Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes, Environ. Sci. Technol., 46, 13521, 10.1021/es3024435
Turner, 2002, Effects of Ascophyllum nodosum extract on growth performance and immune function of young pigs challenged with Salmonella typhimurium 1, J. Anim. Sci., 80, 1947, 10.2527/2002.8071947x
Uggetti, 2014, Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity, Bioresour. Technol., 152, 437, 10.1016/j.biortech.2013.11.036
Vigani, 2015, Food and feed products from micro-algae: Market opportunities and challenges for the EU, Trends Food Sci. Technol., 42, 81, 10.1016/j.tifs.2014.12.004
Van Den Hende, 2014, Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond, Biores. Technol., 159, 342, 10.1016/j.biortech.2014.02.113
Van der Werf, 2009, CO2 emissions from forest loss, Nat. Geosci., 2, 737, 10.1038/ngeo671
Vaneeckhaute, 2013, Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture, Biomass Bioenergy, 49, 239, 10.1016/j.biombioe.2012.12.036
Vázquez-Rowe, 2015, Environmental assessment of digestate treatment technologies using LCA methodology, Waste Manage., 43, 442, 10.1016/j.wasman.2015.05.007
Vulsteke, 2017, Economic feasibility of microalgal bacterial floc production for wastewater treatment and biomass valorization: A detailed up-to-date analysis of up-scaled pilot results, Bioresour. Technol., 224, 118, 10.1016/j.biortech.2016.11.090
Walsh, 2012, Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost, J. Plant Nutr. Soil Sci., 175, 840, 10.1002/jpln.201200214
Wang, 2010, Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp, Bioresour. Technol., 101, 2623, 10.1016/j.biortech.2009.10.062
Weidema, 2000, Avoiding co-product allocation in life-cycle assessment, J. Ind. Ecol., 4, 11, 10.1162/108819800300106366
Weidema, 2010, Avoiding allocation in life cycle assessment revisited, J. Ind. Ecol., 14, 192, 10.1111/j.1530-9290.2010.00236.x
Williams, 2013, Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management, Bioresour. Technol., 140, 234, 10.1016/j.biortech.2013.04.089
Withers, 2002, Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs, Sci. Total Environ., 282, 9, 10.1016/S0048-9697(01)00935-4
Wollenberg, 2016, Reducing emissions from agriculture to meet the 2 °C target, Glob. Change Biol., 22, 3859, 10.1111/gcb.13340
WRAP, 2012. Using quality anaerobic digestate to benefit crops 1–12. Available from http://www.wrap.org.uk/sites/files/wrap/Using%20quality%20digestate %20to%20benefit%20crops.pdf. Accessed 13/06/18.
Xu, 2015, Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment, Appl. Microbiol. Biotechnol., 99, 6493, 10.1007/s00253-015-6537-x
Yaakob, 2014, An overview: biomolecules from microalgae for animal feed and aquaculture, J. Biol. Res. Thessaloniki, 21, 6, 10.1186/2241-5793-21-6
Zamagni, 2012, Lights and shadows in consequential LCA, Int. J. Life Cycle Assess., 17, 904, 10.1007/s11367-012-0423-x
Zheng, 2009, Carbon and nitrogen nutrient balance signalling in plants, Plant Signalling Behav., 4, 584, 10.4161/psb.4.7.8540
Zuliani, 2016, Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste, Int. J. Mol. Sci., 17, 1692, 10.3390/ijms17101692
Zuñiga, 2016, Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth conditions, Plant Physiol., 00593