The chemistry of irreversible capture

Advanced Drug Delivery Reviews - Tập 60 - Trang 1383-1388 - 2008
Claude F. Meares1
1Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA

Tài liệu tham khảo

Reardan, 1985, Antibodies against metal chelates, Nature, 316, 265, 10.1038/316265a0 Stickney, 1991, Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma, Cancer Res., 51, 6650 Love, 1993, How the anti-(metal chelate) antibody CHA255 is specific for the metal ion of its antigen: X-ray structures for two Fab'/hapten complexes with different metals in the chelate, Biochemistry, 32, 10950, 10.1021/bi00092a004 Chmura, 2001, Antibodies with infinite affinity, Proc. Natl. Acad. Sci. U. S. A., 98, 8480, 10.1073/pnas.151260298 Baker, 1961, Potential anticancer agents. LXVI. Non-classical antimetabolites. III. 4-(Iodoacetamido)-salicylic acid, an exo alkylating irreversible inhibitor of glutamic dehydrogenase, J. Am. Chem. Soc., 83, 3713, 10.1021/ja01478a034 Schoellmann, 1963, Direct evidence for the presence of histidine in the active center of chymotrypsin, Biochemistry, 2, 252, 10.1021/bi00902a008 Wofsy, 1962, Affinity labeling-A general method for labeling the active sites of antibody and enzyme molecules, Biochemistry, 1, 1031, 10.1021/bi00912a013 Fry, 1998, Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor, Proc. Natl. Acad. Sci. U. S. A., 95, 12022, 10.1073/pnas.95.20.12022 Yocum, 1979, Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases, Proc. Natl. Acad. Sci. U. S. A., 76, 2730, 10.1073/pnas.76.6.2730 Chmura, 2002, Electrophilic chelating agents for binding of metal chelates to engineered antibodies, J. Control. Release, 78, 249, 10.1016/S0168-3659(01)00485-0 Corneillie, 2004, Converting weak binders into infinite binders, Bioconjug. Chem., 15, 1389, 10.1021/bc049825e Corneillie, 2004, Irreversible engineering of the multielement-binding antibody 2D12.5 and its complementary ligands, Bioconjug. Chem., 15, 1392, 10.1021/bc049824m Corneillie, 2006, Irreversibly binding anti-metal chelate antibodies: artificial receptors for pretargeting, J. Inorg. Biochem., 100, 882, 10.1016/j.jinorgbio.2006.01.004 Butlin, 2006, Antibodies with infinite affinity: origins and applications, Acc. Chem. Res., 39, 780, 10.1021/ar020275e Fersht, 1985, 56 Pollack, 1988, Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science (Washington, DC), 242, 1038, 10.1126/science.3194752 Salerno, 1993, Covalent modification with concomitant inactivation of the cAMP-dependent protein kinase by affinity labels containing only L-amino acids, J. Biol. Chem., 268, 13043, 10.1016/S0021-9258(19)38616-8 Yan, 1996, Precision targeting of protein kinases—an affinity label that inactivates the cGMP- but not the cAMP-dependent protein kinase, J. Biol. Chem., 271, 1845, 10.1074/jbc.271.4.1845 Levitsky, 2003, Selective inhibition of engineered receptors via proximity-accelerated alkylation, Org. Lett., 5, 693, 10.1021/ol027448k Chen, 2003, Reactivity of functional groups on the protein surface: development of epoxide probes for protein labeling, J. Am. Chem. Soc., 125, 8130, 10.1021/ja034287m Blanca, 2005, Specificities of B cell reactions to drugs. The penicillin model, Toxicology, 209, 181, 10.1016/j.tox.2004.12.018 Nicholas, 1988, Site-directed mutants of a soluble form of penicillin-binding protein 5 from Escherichia coli and their catalytic properties, J. Biol. Chem., 263, 2034, 10.1016/S0021-9258(19)77981-2 Wymann, 1996, Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction, Mol. Cell. Biol., 16, 1722, 10.1128/MCB.16.4.1722 Wipf, 2005, Chemistry and biology of wortmannin, Org. Biomol. Chem., 3, 2053, 10.1039/b504418a Norman, 1995, Synthetic studies on the furan ring of wortmannin, Bioorg. Med. Chem. Lett., 5, 1183, 10.1016/0960-894X(95)00191-U Kunz, 1991, Structure-activity relationships for mitomycin C and mitomycin A analogues, J. Med. Chem., 34, 2281, 10.1021/jm00111a051 Boamah, 2007, Mitomycin-DNA adducts induce p53-dependent and p53-independent cell death pathways, ACS Chem. Biol., 2, 399, 10.1021/cb700060t Corneillie, 2003, Crystal structures of two complexes of the rare-Earth-DOTA-binding antibody 2D12.5: ligand generality from a chiral system, J. Am. Chem. Soc., 125, 15039, 10.1021/ja037236y Corneillie, 2003, A rare earth-DOTA-binding antibody: probe properties and binding affinity across the lanthanide series, J. Am. Chem. Soc., 125, 3436, 10.1021/ja029363k Krusemark, 2007, Covalent labelling of fusion proteins in live cells via an engineered receptor–ligand pair, Org. Biomol. Chem., 5, 2201, 10.1039/B705185A Noll, 2001, Covalent capture of a human O(6)-alkylguanine alkyltransferase-DNA complex using N(1),O(6)-ethanoxanthosine, a mechanism-based crosslinker, Nucleic Acids Res., 29, 4025, 10.1093/nar/29.19.4025 Heinis, 2006, Evolving the substrate specificity of O6-alkylguanine-DNA alkyltransferase through loop insertion for applications in molecular imaging, ACS Chem. Biol., 1, 575, 10.1021/cb6003146