Common variants at ten loci influence QT interval duration in the QTGEN Study

Nature Genetics - Tập 41 Số 4 - Trang 399-406 - 2009
Christopher Newton‐Cheh1, Mark Eijgelsheim2, Kenneth Rice3, Paul I.W. de Bakker4, Xiaoyan Yin5, Karol Estrada6, Joshua C. Bis7, Kristin D. Marciante7, Fernando Rivadeneira2, Peter A. Noseworthy1, Nona Sotoodehnia7, Nicholas L. Smith7, Jerome I. Rotter8, Jan A. Kors9, Jacqueline C.M. Witteman2, Albert Hofman2, Susan R. Heckbert7, Christopher J O’Donnell5, André G. Uitterlinden6, Bruce M. Psaty7, Thomas Lumley3, Martin G. Larson10, Bruno H. Stricker6
1Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
2Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
3Department of Biostatistics, University of Washington, Seattle, Washington, USA.
4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
5National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA.
6Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
7Cardiovascular Health Research Unit, University of Washington, Metropolitan Park East Tower, Seattle, Washington, USA
8Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
9Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
10Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Straus, S.M. et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll. Cardiol. 47, 362–367 (2006).

Newton-Cheh, C. et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm 2, 277–284 (2005).

Newton-Cheh, C. & Shah, R. Genetic determinants of QT interval variation and sudden cardiac death. Curr. Opin. Genet. Dev. 17, 213–221 (2007).

Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185 (2000).

Arking, D.E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

Bezzina, C.R. et al. A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc. Res. 59, 27–36 (2003).

Pfeufer, A. et al. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ. Res. 96, 693–701 (2005).

Newton-Cheh, C. et al. Common genetic variation in KCNH2 is associated with QT interval duration: The Framingham Heart Study. Circulation 116, 1128–1136 (2007).

Gouas, L. et al. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur. J. Hum. Genet. 13, 1213–1222 (2005).

Psaty, B.M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from five cohorts. Circulation: Cardiovascular Genetics 2, 73–80 (2009).

Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PloS Genet. 3, e114 (2007).

Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

Pfeufer, A. et al. Common variants in ten loci modulate QT interval duration in the QTSCD study. Nat. Genet. advance online publication, doi:10.1038/ng.362 (22 March 2008).

Aarnoudse, A.J. et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation 116, 10–16 (2007).

Lehtinen, A.B. et al. Association of NOS1AP genetic variants with QT interval duration in families from the Diabetes Heart Study. Diabetes 57, 1108–1114 (2008).

Post, W. et al. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum. Hered. 64, 214–219 (2007).

Tobin, M.D. et al. Gender and effects of a common genetic variant in the NOS1 regulator NOS1AP on cardiac repolarization in 3761 individuals from two independent populations. Int. J. Epidemiol. 37, 1132–1141 (2008).

Eijgelsheim, M. et al. Identification of a common variant at the NOS1AP locus strongly associated to QT-interval duration. Hum. Mol. Genet. 18, 347–357 (2009).

Pietila, E. et al. Association between HERG K897T polymorphism and QT interval in middle-aged Finnish women. J. Am. Coll. Cardiol. 40, 511–514 (2002).

Sotoodehnia, N. et al. KCNE1 Gene D85N Variant, QT Interval, and Risk Of Mortality. Circulation 111, e231 (2005).

Marjamaa, A. et al. Common candidate gene variants are associated with QT interval duration in the general population. J. Intern. Med. advance online publication, doi:10.1111/j.1365-2796.2008.02026.x (25 October 2008).

Wei, J. et al. KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of I-Ks potassium channels. Circulation 100, 495–495 (1999).

Paulussen, A.D. et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J. Mol. Med. 82, 182–188 (2004).

Salisbury, B.A. et al. The single nucleotide polymorphism D85N-KCNE1 is associated with both congenital and drug-induced long QT. Heart Rhythm 3(Suppl. 1), S98 (2006).

Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

Burke, A. et al. Role of SCN5A Y1102 polymorphism in sudden cardiac death in blacks. Circulation 112, 798–802 (2005).

Amsterdam, A. et al. Identification of 315 genes essential for early zebrafish development. Proc. Natl. Acad. Sci. USA 101, 12792–12797 (2004).

Qu, X. et al. Ndrg4 is required for normal myocyte proliferation during early cardiac development in zebrafish. Dev. Biol. 317, 486–496 (2008).

Milan, D.J. et al. Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107, 1355–1358 (2003).

Luo, W. et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ. Res. 75, 401–409 (1994).

Schmitt, J.P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–1413 (2003).

Haghighi, K. et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl. Acad. Sci. USA 103, 1388–1393 (2006).

Splawski, I. et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc. Natl. Acad. Sci. USA 102, 8089–8096 (2005).

Street, V.A. et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60, 22–26 (2003).

Dawber, T., Kannel, W.B. & Lyell, L.P. An approach to longitudinal studies in a community: the Framingham Heart Study. Ann. NY Acad. Sci. 107, 539–556 (1963).

Kannel, W.B., Feinleib, M. & McNamara, P.M. An investigation of coronary heart disease in families: the Framingham Offspring Study. Am. J. Epidemiol. 110, 281–290 (1979).

Splansky, G.L. et al. The third generation cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am. J. Epidemiol. 165, 1328–1335 (2007).

Hofman, A. et al. The Rotterdam Study: objectives and design update. Eur. J. Epidemiol. 22, 819–829 (2007).

Hofman, A., Grobbee, D.E., de Jong, P.T. & van den Ouweland, F.A. Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur. J. Epidemiol. 7, 403–422 (1991).

Fried, L.P. et al. The Cardiovascular Health Study: design and rationale. Ann. Epidemiol. 1, 263–276 (1991).

van Bemmel, J.H., Kors, J.A. & van Herpen, G. Methodology of the modular ECG analysis system MEANS. Methods Inf. Med. 29, 346–353 (1990).

Rabbee, N. & Speed, T.P. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22, 7–12 (2006).

Li, Y. & Mach Abecasis, G.R. 1.0: Rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. S79, 2290 (2006).

de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).