A Study on the Mechanical Behavior and Statistical Damage Constitutive Model of Sandstone

Arabian Journal for Science and Engineering - Tập 43 Số 10 - Trang 5179-5192 - 2018
Junbao Wang1, Zhanping Song1, Baoyun Zhao2, Xinrong Liu3,1, Jun Liu3, Jinxing Lai4
1School of Civil Engineering, Xi׳an University of Architecture and Technology, Xi׳an, China
2Department of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, China
3School of Civil Engineering, Chongqing University, Chongqing, China
4School of Highway, Chang’an University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cook, N.G.W.: The failure of rock. Int. J. Rock Mech. Min. Sci. 2(4), 389–403 (1965)

Li, Y.P.; Liu, W.; Yang, C.H.; Daemen, J.J.K.: Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69(3), 39–49 (2014)

Labuz, J.F.; Biolzi, L.: Experiments with rock: remarks on strength and stability issues. Int. J. Rock Mech. Min. Sci. 44(4), 525–537 (2007)

Garaga, A.; Latha, G.M.: Intelligent prediction of the stress–strain response of intact and jointed rocks. Comput. Geotech. 37(5), 629–637 (2010)

Wang, J.B.; Liu, X.R.; Song, Z.P.; Guo, J.Q.; Zhang, Q.Q.: A creep constitutive model with variable parameters for thenardite. Environ. Earth Sci. 75(11), 979(1–12) (2016)

Klinkenberg, M.; Kaufhold, S.; Dohrmann, R.; Siegesmund, S.: Influence of carbonate micofabric on the failure strength of claystones. Eng. Geol. 107(1–2), 42–54 (2009)

Chen, J.; Jiang, D.Y.; Ren, S.; Yang, C.H.: Comparison of the characteristics of rock salt exposed to loading and unloading of confining pressures. Acta Geotech. 11(1), 221–230 (2015)

Lai, J.; Mao, S.; Qiu, J.; Fan, H.; Zhang, Q.; Hu, Z.: Investigation progresses and applications of fractional derivative model in geotechnical engineering. Math. Probl. Eng. 2016(3), 1–15 (2016)

Yang, S.Q.; Jing, H.W.; Wang, S.Y.: Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech. Rock Eng. 45(4), 583–606 (2012)

Kahraman, S.; Alber, M.: Triaxial strength of a fault breccia of weak rocks in a strong matrix. Bull. Eng. Geol. Environ. 67(3), 435–441 (2008)

Amann, F.; Kaiser, P.; Button, E.A.: Experimental study of brittle behavior of clay shale in rapid triaxial compression. Rock Mech. Rock Eng. 45(1), 21–33 (2012)

Zhang, Y.; Shao, J.F.; Xu, W.Y.; Zhao, H.B.; Wang, W.: Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech. Rock Eng. 48(3), 1083–1096 (2015)

Huang, D.; Gu, D.M.; Yang, C.; Huang, R.Q.; Fu, G.Y.: Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mech. Rock Eng. 49(2), 375–399 (2016)

Yu, J.; Chen, X.; Cai, Y.Y.; Li, H.: Triaxial test research on mechanical properties and permeability of sandstone with a single joint filled with gypsum. KSCE J. Civ. Eng. 6, 1–10 (2016)

Zhang, K.; Zhou, H.; Shao, J.F.: An experimental investigation and an elastoplastic constitutive model for a porous rock. Rock Mech. Rock Eng. 46(6), 1499–1511 (2013)

Siddiquee, M.S.A.; Islam, M.S.; Tatsuoka, F.: Development of a nonlinear model for soft rock and its applications. Geotech. Geol. Eng. 31(2), 627–645 (2013)

Zhu, Q.Z.; Shao, J.F.; Kondo, D.: Micromechanical modeling of anisotropic damage in brittle rocks and application. Int. J. Rock Mech. Min. Sci. 45(4), 467–477 (2008)

Xie, S.Y.; Shao, J.F.: An experimental study and constitutive modeling of saturated porous rocks. Rock Mech. Rock Eng. 48(1), 223–234 (2015)

Golshani, A.; Okui, Y.; Oda, M.; Takemura, T.: A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Astrophys. J. 38(4), 287–303 (2006)

Krajcinovic, D.; Silva, M.A.G.: Statistical aspects of the continuous damage theory. Int. J. Solids Struct. 18(7), 551–562 (1982)

Frantziskonis, G.; Desai, C.S.: Constitutive model with strain softening. Int. J. Solids Struct. 23(6), 733–750 (1987)

Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsui, Y.; Tham, L.G.: Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int. J. Rock Mech. Min. Sci. 37(4), 555–569 (2000)

Wang, Z.L.; Li, Y.C.; Wang, J.G.: A damage-softening statistical constitutive model considering rock residual strength. Comput. Geosci. 33(1), 1–9 (2007)

Liu, H.Y.; Zhang, L.M.: A damage constitutive model for rock mass with nonpersistently closed joints under uniaxial compression. Arab. J. Sci. Eng. 40(11), 3107–3117 (2015)

Li, H.Z.; Liao, H.J.; Xiong, G.D.; Han, B.; Zhao, G.P.: A three-dimensional statistical damage constitutive model for geomaterials. J. Mech. Sci. Technol. 29(1), 71–77 (2015)

Cao, W.G.; Zhao, H.; Li, X.; Zhang, Y.J.: Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes. Can. Geotech. J. 47(8), 857–871 (2010)

Deng, J.; Gu, D.S.: On a statistical damage constitutive model for rock materials. Comput. Geotech. 37(2), 122–128 (2011)

Li, X.; Cao, W.G.; Su, Y.H.: A statistical damage constitutive model for softening behavior of rocks. Eng. Geol. 143–144, 1–17 (2012)

Yang, S.Q.; Su, C.D.; Xu, W.Y.: Experimental investigation on strength and deformation properties of marble under conventional triaxial compression. Rock Soil Mech. 26(3), 475–478 (2005)

Liang, W.; Yang, C.; Zhao, Y.; Dusseault, M.B.; Liu, J.: Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 44(3), 400–411 (2007)

Yang, S.Q.; Jiang, Y.Z.: Triaxial mechanical creep behavior of sandstone. Min. Sci. Technol. 20(3), 339–349 (2010)

You, M.Q.: Effect of confining pressure on the Young’s modulus of rock specimen. Chin. J. Rock Mech. Eng. 22(1), 53–60 (2003)

Peng, J.; Rong, G.; Cai, M.; Wang, X.J.; Zhou, C.B.: An empirical failure criterion for intact rocks. Rock Mech. Rock Eng. 47(2), 347–356 (2014)

Singh, M.; Samadhiya, N.K.; Kumar, A.; Kumar, V.; Singh, B.: A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech. Rock Eng. 48(4), 1387–1405 (2015)

Hoek, E.; Brown, E.T.: Empirical strength criterion for rock masses. ASCE J. Geotech. Geoenviron. Eng. 106(15715), 1013–1035 (1980)

Hoek, E.; Wood, D.; Shah, S.: A modified Hoek–Brown criterion for jointed rock masses. In: Hudson, J. (ed.) Proceeding of the Rock Characterization Symposium, pp. 209–213. International Society for Rock Mechanics (1992)

Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80(2), 233–245 (1984)

Yan, X.B.; Qin, Y.P.; Ye, F.: Damage constitutive relation of sandstone considering residual stress. J. China Coal Soc. 40(12), 2807–2811 (2015)

Cao, W.G.; Zhao, H.; Li, X.; Zhang, L.: A statistical damage simulation method for rock full deformation process with consideration of the deformation characteristics of residual strength phase. China Civ. Eng. J. 45(6), 139–145 (2012)