Quantum Carnot cycle with inner friction
Tóm tắt
A single driven spin is investigated as the working substance of a six-stroke irreversible quantum Carnot cycle. The role of inner friction associated with the finite-time adiabatic transformations on the cycle efficiency and the harvested work are investigated in detail. The inner friction is found to significantly reduce the work output and the cycle efficiency which can make the engine incapable to produce positive work for the too fast adiabatic transformations. The ideal Carnot efficiency is found to be reached only for the quasistatic transformations. A deviation of the cycle efficiency from the classical Carnot efficiency has been given by an efficiency lag which is directly related to the total entropy production due to the inner friction. The released heat in the relaxation processes of the cycle is associated with the entropy production and the inner friction. The extension of the results for a scale-invariant quantum working substance and the possible experimental implementation of the irreversible quantum Carnot cycle in a liquid-state nuclear magnetic resonance setup are also discussed.
Tài liệu tham khảo
Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)
Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)
Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E. 79, 041129 (2009)
Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)
Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)
Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)
Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)
Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)
Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)
Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)
Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)
Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)
Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)
Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)
de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019)
Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)
Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)
Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)
Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)
Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)
Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)
Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)
Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)
Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)
Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)
Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)
del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015)
del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)
Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)
Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)
Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017)
Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)
Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)
Rezek, Y., Kosloff, R.: Irreversible performance of a quantum harmonic heat engine. New J. Phys. 8, 83–83 (2006)
Kosloff, R., Feldmann, T.: Discrete four-stroke quantum heat engine exploring the origin of friction. Phys. Rev. E 65, 055102(R) (2002)
Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)
Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)
Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)
Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)
Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)
Rezek, Y.: Reflections on friction in quantum mechanics. Entropy 12, 1885–1901 (2010)
Kosloff, R.: Quantum thermodynamics: a dynamical viewpoint. Entropy 15, 2100–2128 (2013)
Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)
Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)
Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)
Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A.G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)
Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)
Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)
Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)
Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)
Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)
Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)
Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)
Acconcia, T.V., Bonança, M.V.S., Deffner, S.: Shortcuts to adiabaticity from linear response theory. Phys. Rev. E 92, 042148 (2015)
Bonança, M.V.S.: Approaching Carnot efficiency at maximum power in linear response regime. J. Stat. Mech. 2019, 123203 (2019)