A systematic review of natural language processing applied to radiology reports
Tóm tắt
Natural language processing (NLP) has a significant role in advancing healthcare and has been found to be key in extracting structured information from radiology reports. Understanding recent developments in NLP application to radiology is of significance but recent reviews on this are limited. This study systematically assesses and quantifies recent literature in NLP applied to radiology reports. We conduct an automated literature search yielding 4836 results using automated filtering, metadata enriching steps and citation search combined with manual review. Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics. We present a comprehensive analysis of the 164 publications retrieved with publications in 2019 almost triple those in 2015. Each publication is categorised into one of 6 clinical application categories. Deep learning use increases in the period but conventional machine learning approaches are still prevalent. Deep learning remains challenged when data is scarce and there is little evidence of adoption into clinical practice. Despite 17% of studies reporting greater than 0.85 F1 scores, it is hard to comparatively evaluate these approaches given that most of them use different datasets. Only 14 studies made their data and 15 their code available with 10 externally validating results. Automated understanding of clinical narratives of the radiology reports has the potential to enhance the healthcare process and we show that research in this field continues to grow. Reproducibility and explainability of models are important if the domain is to move applications into clinical use. More could be done to share code enabling validation of methods on different institutional data and to reduce heterogeneity in reporting of study properties allowing inter-study comparisons. Our results have significance for researchers in the field providing a systematic synthesis of existing work to build on, identify gaps, opportunities for collaboration and avoid duplication.
Tài liệu tham khảo
Bates J, Fodeh SJ, Brandt CA, Womack JA. Classification of radiology reports for falls in an HIV study cohort. J Am Med Inform Assoc. 2016;23(e1):113–7. https://doi.org/10.1093/jamia/ocv155.
Pons E, Braun LMM, Hunink MGM, Kors JA. Natural language processing in radiology: a systematic review. Radiology. 2016;279(2):329–43. https://doi.org/10.1148/radiol.16142770.
Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, Rybicki FJ, Mitsouras D. Natural language processing technologies in radiology research and clinical applications. RadioGraphics. 2016;36(1):176–91. https://doi.org/10.1148/rg.2016150080.
Sorin V, Barash Y, Konen E, Klang E. Deep learning for natural language processing in radiology-fundamentals and a systematic review. J Am Coll Radiol. 2020;17(5):639–48. https://doi.org/10.1016/j.jacr.2019.12.026.
Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, Forshee R, Walderhaug M, Botsis T. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inform. 2017;73:14–29. https://doi.org/10.1016/j.jbi.2017.07.012.
Spasic I, Nenadic G. Clinical text data in machine learning: systematic review. JMIR Med Inform. 2020;8(3):17984. https://doi.org/10.2196/17984.
Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, Soni S, Wang Q, Wei Q, Xiang Y, Zhao B, Xu H. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70. https://doi.org/10.1093/jamia/ocz200.
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. https://doi.org/10.1186/2046-4053-4-1.
Harzing AW. Publish or Perish (2007). Available from https://harzing.com/resources/publish-or-perish. Accessed 1 Nov 2019.
Gehanno J-F, Rollin L, Darmoni S. Is the coverage of google scholar enough to be used alone for systematic reviews. BMC Med Inform Decis Mak. 2013;13:7. https://doi.org/10.1186/1472-6947-13-7.
Wilkinson LJ, REST API. Publication title: crossref type: website. https://www.crossref.org/education/retrieve-metadata/rest-api/. Accessed 26 Jan 2020.
For AI AI. Semantic scholar |AI-powered research tool. https://api.semanticscholar.org/. Accessed 26 Jan 2021.
University C. arXiv.org e-Print archive. https://arxiv.org/. Accessed 26 Jan 2021.
Bearden E, LibGuides: unpaywall: home. https://library.lasalle.edu/c.php?g=982604&p=7105436. Accessed 26 Jan 2021.
Briscoe S, Bethel A, Rogers M. Conduct and reporting of citation searching in Cochrane systematic reviews: a cross-sectional study. Res Synth Methods. 2020;11(2):169–80. https://doi.org/10.1002/jrsm.1355.
Wohlin C, Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on evaluation and assessment in software engineering. EASE ’14. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2601248.2601268. event-place: London, England, UK. https://doi.org/10.1145/2601248.2601268.
Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull. 1971;76(5):378–82. https://doi.org/10.1037/h0031619.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74. https://doi.org/10.2307/2529310.
Peng Y, Yan K, Sandfort V, Summers R.M, Lu Z. A self-attention based deep learning method for lesion attribute detection from CT reports. In: 2019 IEEE international conference on healthcare informatics (ICHI), pp. 1–5. IEEE Computer Society, Xi’an, China (2019). https://doi.org/10.1109/ICHI.2019.8904668.
Bozkurt S, Alkim E, Banerjee I, Rubin DL. Automated detection of measurements and their descriptors in radiology reports using a hybrid natural language processing algorithm. J Digit Imaging. 2019;32(4):544–53. https://doi.org/10.1007/s10278-019-00237-9.
Hassanpour S, Bay G, Langlotz CP. Characterization of change and significance for clinical findings in radiology reports through natural language processing. J Digit Imaging. 2017;30(3):314–22. https://doi.org/10.1007/s10278-016-9931-8.
Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, Johnson BE, Schrag D. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol. 2019;5(10):1421–9. https://doi.org/10.1001/jamaoncol.2019.1800.
Chen P-H, Zafar H, Galperin-Aizenberg M, Cook T. Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports. J Digit Imaging. 2018;31(2):178–84. https://doi.org/10.1007/s10278-017-0027-x.
Cotik V, Rodríguez H, Vivaldi J. Spanish named entity recognition in the biomedical domain. In: Lossio-Ventura JA, Muñante D, Alatrista-Salas H, editors. Information management and big data. Communications in computer and information science, vol. 898. Lima: Springer; 2018. p. 233–48. https://doi.org/10.1007/978-3-030-11680-4-23.
Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform. 2015;06(3):600–10. https://doi.org/10.4338/ACI-2014-11-RA-0110.
Sevenster M, Bozeman J, Cowhy A, Trost W. A natural language processing pipeline for pairing measurements uniquely across free-text CT reports. J Biomed Inform. 2015;53:36–48. https://doi.org/10.1016/j.jbi.2014.08.015.
Oberkampf H, Zillner S, Overton JA, Bauer B, Cavallaro A, Uder M, Hammon M. Semantic representation of reported measurements in radiology. BMC Med Inform Decis Mak. 2016;16(1):5. https://doi.org/10.1186/s12911-016-0248-9.
Liu Y, Zhu L-N, Liu Q, Han C, Zhang X-D, Wang X-Y. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing. Chin Med J. 2019;132(14):1673–80. https://doi.org/10.1097/CM9.0000000000000301.
Gupta A, Banerjee I, Rubin DL. Automatic information extraction from unstructured mammography reports using distributed semantics. J Biomed Inform. 2018;78:78–86. https://doi.org/10.1016/j.jbi.2017.12.016.
Castro SM, Tseytlin E, Medvedeva O, Mitchell K, Visweswaran S, Bekhuis T, Jacobson RS. Automated annotation and classification of BI-RADS assessment from radiology reports. J Biomed Inform. 2017;69:177–87. https://doi.org/10.1016/j.jbi.2017.04.011.
Short RG, Bralich J, Bogaty D, Befera NT. Comprehensive word-level classification of screening mammography reports using a neural network sequence labeling approach. J Digit Imaging. 2019;32(5):685–92. https://doi.org/10.1007/s10278-018-0141-4.
Lacson R, Goodrich ME, Harris K, Brawarsky P, Haas JS. Assessing inaccuracies in automated information extraction of breast imaging findings. J Digit Imaging. 2017;30(2):228–33. https://doi.org/10.1007/s10278-016-9927-4.
Lacson R, Harris K, Brawarsky P, Tosteson TD, Onega T, Tosteson ANA, Kaye A, Gonzalez I, Birdwell R, Haas JS. Evaluation of an automated information extraction tool for imaging data elements to populate a breast cancer screening registry. J Digit Imaging. 2015;28(5):567–75. https://doi.org/10.1007/s10278-014-9762-4.
Yim W-W, Kwan SW, Yetisgen M. Tumor reference resolution and characteristic extraction in radiology reports for liver cancer stage prediction. J Biomed Inform. 2016;64:179–91. https://doi.org/10.1016/j.jbi.2016.10.005.
Yim W-W, Kwan SW, Yetisgen M. Classifying tumor event attributes in radiology reports. J Assoc Inform Sci Technol. 2017;68(11):2662–74. https://doi.org/10.1002/asi.23937.
Yim W, Denman T, Kwan SW, Yetisgen M. Tumor information extraction in radiology reports for hepatocellular carcinoma patients. AMIA Summits Transl Sci Proc. 2016;2016:455–64.
Pruitt P, Naidech A, Van Ornam J, Borczuk P, Thompson W. A natural language processing algorithm to extract characteristics of subdural hematoma from head CT reports. Emerg Radiol. 2019;26(3):301–6. https://doi.org/10.1007/s10140-019-01673-4.
Farjah F, Halgrim S, Buist DSM, Gould MK, Zeliadt SB, Loggers ET, Carrell DS. An automated method for identifying individuals with a lung nodule can be feasibly implemented across health systems. eGEMs. 2016;4(1):1254. https://doi.org/10.13063/2327-9214.1254.
Karunakaran B, Misra D, Marshall K, Mathrawala D, Kethireddy S. Closing the loop-finding lung cancer patients using NLP. In: 2017 IEEE international conference on big data (big data), pp. 2452–61. IEEE, Boston, MA (2017). https://doi.org/10.1109/BigData.2017.8258203.
Tan WK, Hassanpour S, Heagerty PJ, Rundell SD, Suri P, Huhdanpaa HT, James K, Carrell DS, Langlotz CP, Organ NL, Meier EN, Sherman KJ, Kallmes DF, Luetmer PH, Griffith B, Nerenz DR, Jarvik JG. Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain. Acad Radiol. 2018;25(11):1422–32. https://doi.org/10.1016/j.acra.2018.03.008.
Trivedi G, Hong C, Dadashzadeh ER, Handzel RM, Hochheiser H, Visweswaran S. Identifying incidental findings from radiology reports of trauma patients: an evaluation of automated feature representation methods. Int J Med Inform. 2019;129:81–7. https://doi.org/10.1016/j.ijmedinf.2019.05.021.
Fu S, Leung LY, Wang Y, Raulli A-O, Kallmes DF, Kinsman KA, Nelson KB, Clark MS, Luetmer PH, Kingsbury PR, Kent DM, Liu H. Natural language processing for the identification of silent brain infarcts from neuroimaging reports. JMIR Med Inform. 2019;7(2):12109. https://doi.org/10.2196/12109.
Jnawali K, Arbabshirani MR, Ulloa AE, Rao N, Patel AA. Automatic classification of radiological report for intracranial hemorrhage. In: 2019 IEEE 13th international conference on semantic computing (ICSC), pp. 187–90. IEEE, Newport Beach, CA, USA (2019). https://doi.org/10.1109/ICOSC.2019.8665578.
Banerjee I, Madhavan S, Goldman RE, Rubin DL. Intelligent Word embeddings of free-text radiology reports. In: AMIA annual symposium proceedings, pp. 411–20 (2017). Accessed 30 Oct 2020.
Kłos M, Żyłkowski J, Spinczyk D, Automatic classification of text documents presenting radiology examinations. In: Pietka E, Badura P, Kawa J, Wieclawek W, editors. Proceedings 6th international conference information technology in biomedicine (ITIB’2018). Advances in intelligent systems and computing, pp. 495–505. Springer (2018). https://doi.org/10.1007/978-3-319-91211-0-43.
Deshmukh N, Gumustop S, Gauriau R, Buch V, Wright B, Bridge C, Naidu R, Andriole K, Bizzo B. Semi-supervised natural language approach for fine-grained classification of medical reports. arXiv:1910.13573 [cs.LG] (2019). Accessed 30 Oct 2020.
Kim C, Zhu V, Obeid J, Lenert L. Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke. PLoS ONE. 2019;14(2):0212778. https://doi.org/10.1371/journal.pone.0212778.
Garg R, Oh E, Naidech A, Kording K, Prabhakaran S. Automating ischemic stroke subtype classification using machine learning and natural language processing. J Stroke Cerebrovasc Dis. 2019;28(7):2045–51. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.004.
Shin B, Chokshi FH, Lee T, Choi JD. Classification of radiology reports using neural attention models. In: 2017 international joint conference on neural networks (IJCNN), pp. 4363–70. IEEE, Anchorage, AK (2017). https://doi.org/10.1109/IJCNN.2017.7966408.
Wheater E, Mair G, Sudlow C, Alex B, Grover C, Whiteley W. A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records. BMC Med Inform Decis Mak. 2019;19(1):184. https://doi.org/10.1186/s12911-019-0908-7.
Gorinski P.J, Wu H, Grover C, Tobin R, Talbot C, Whalley H, Sudlow C, Whiteley W, Alex B. Named entity recognition for electronic health records: a comparison of rule-based and machine learning approaches. arXiv:1903.03985 [cs.CL] (2019). Accessed 30 Oct 2020.
Alex B, Grover C, Tobin R, Sudlow C, Mair G, Whiteley W. Text mining brain imaging reports. J Biomed Semant. 2019;10(1):23. https://doi.org/10.1186/s13326-019-0211-7.
Bozkurt S, Gimenez F, Burnside ES, Gulkesen KH, Rubin DL. Using automatically extracted information from mammography reports for decision-support. J Biomed Inform. 2016;62:224–31. https://doi.org/10.1016/j.jbi.2016.07.001.
Patel TA, Puppala M, Ogunti RO, Ensor JE, He T, Shewale JB, Ankerst DP, Kaklamani VG, Rodriguez AA, Wong STC, Chang JC. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Cancer. 2017;123(1):114–21. https://doi.org/10.1002/cncr.30245.
Banerjee I, Bozkurt S, Alkim E, Sagreiya H, Kurian AW, Rubin DL. Automatic inference of BI-RADS final assessment categories from narrative mammography report findings. J Biomed Inform. 2019. https://doi.org/10.1016/j.jbi.2019.103137.
Miao S, Xu T, Wu Y, Xie H, Wang J, Jing S, Zhang Y, Zhang X, Yang Y, Zhang X, Shan T, Wang L, Xu H, Wang S, Liu Y. Extraction of BI-RADS findings from breast ultrasound reports in Chinese using deep learning approaches. Int J Med Inform. 2018;119:17–21. https://doi.org/10.1016/j.ijmedinf.2018.08.009.
Dunne RM, Ip IK, Abbett S, Gershanik EF, Raja AS, Hunsaker A, Khorasani R. Effect of evidence-based clinical decision support on the use and yield of CT pulmonary angiographic imaging in hospitalized patients. Radiology. 2015;276(1):167–74. https://doi.org/10.1148/radiol.15141208.
Banerjee I, Ling Y, Chen MC, Hasan SA, Langlotz CP, Moradzadeh N, Chapman B, Amrhein T, Mong D, Rubin DL, Farri O, Lungren MP. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif Intell Med. 2019;97:79–88. https://doi.org/10.1016/j.artmed.2018.11.004.
Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, Langlotz CP, Amrhein TJ, Lungren MP. Deep learning to classify radiology free-text reports. Radiology. 2017;286(3):845–52. https://doi.org/10.1148/radiol.2017171115.
Meystre S, Gouripeddi R, Tieder J, Simmons J, Srivastava R, Shah S. Enhancing comparative effectiveness research with automated pediatric pneumonia detection in a multi-institutional clinical repository: a PHIS+ pilot study. J Med Internet Res. 2017;19(5):162. https://doi.org/10.2196/jmir.6887.
Beyer SE, McKee BJ, Regis SM, McKee AB, Flacke S, El Saadawi G, Wald C. Automatic lung-RADSTM classification with a natural language processing system. J Thorac Dis. 2017;9(9):3114–22. https://doi.org/10.21037/jtd.2017.08.13.
Patterson OV, Freiberg MS, Skanderson M, Fodeh SJ, Brandt CA, DuVall SL. Unlocking echocardiogram measurements for heart disease research through natural language processing. BMC Cardiovasc Disord. 2017;17(1):151. https://doi.org/10.1186/s12872-017-0580-8.
Lee C, Kim Y, Kim YS, Jang J. Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol. 2019;212(4):734–40. https://doi.org/10.2214/AJR.18.19869.
Fiebeck J, Laser H, Winther HB, Gerbel S. Leaving no stone unturned: using machine learning based approaches for information extraction from full texts of a research data warehouse. In: Auer S, Vidal M-E, editors. 13th international conference data integration in the life sciences (DILS 2018). Lecture Notes in Computer Science, pp. 50–8. Springer, Hannover, Germany (2018). https://doi.org/10.1007/978-3-030-06016-9_5.
Hassanzadeh H, Kholghi M, Nguyen A, Chu K. Clinical document classification using labeled and unlabeled data across hospitals. In: AMIA annual symposium proceedings 2018, pp. 545–54 (2018). Accessed 30 Oct 2020.
Krishnan GS, Kamath SS. Ontology-driven text feature modeling for disease prediction using unstructured radiological notes. Comput Sist. 2019. https://doi.org/10.13053/cys-23-3-3238.
Qenam B, Kim TY, Carroll MJ, Hogarth M. Text simplification using consumer health vocabulary to generate patient-centered radiology reporting: translation and evaluation. J Med Internet Res. 2017;19(12):417. https://doi.org/10.2196/jmir.8536.
Lafourcade M, Ramadier L. Radiological text simplification using a general knowledge base. In: 18th international conference on computational linguistics and intelligent text processing (CICLing 2017). CICLing 2017. Budapest, Hungary (2017). https://doi.org/10.1007/978-3-319-77116-8_46.
Hong Y, Zhang J. Investigation of terminology coverage in radiology reporting templates and free-text reports. Int J Knowl Content Dev Technol. 2015;5:5–14. https://doi.org/10.5865/IJKCT.2015.5.1.005.
Comelli A, Agnello L, Vitabile S. An ontology-based retrieval system for mammographic reports. In: 2015 IEEE symposium on computers and communication (ISCC), pp. 1001–6. IEEE, Larnaca (2015). https://doi.org/10.1109/ISCC.2015.7405644
Cotik V, Filippo D, Castano J. An approach for automatic classification of radiology reports in Spanish. Stud Health Technol Inform. 2015;216:634–8.
Johnson E, Baughman WC, Ozsoyoglu G. A method for imputation of semantic class in diagnostic radiology text. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), pp. 750–5. IEEE, Washington, DC (2015). https://doi.org/10.1109/BIBM.2015.7359780.
Mujjiga S, Krishna V, Chakravarthi KJV. Identifying semantics in clinical reports using neural machine translation. In: Proceedings of the AAAI conference on artificial intelligence, vol. 33(01), pp. 9552–7 (2019). https://doi.org/10.1609/aaai.v33i01.33019552. Accessed 30 Oct 2020.
Lafourcade M, Ramadier L. Semantic relation extraction with semantic patterns: experiment on radiology report. In: Proceedings of the tenth international conference on language resources and evaluation (LREC 2016). LREC 2016 proceedings. european language resources association (ELRA), Portorož, Slovenia (2016). https://hal.archives-ouvertes.fr/hal-01382320.
Shelmerdine SC, Singh M, Norman W, Jones R, Sebire NJ, Arthurs OJ. Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol. 2019;74(9):733–1173318. https://doi.org/10.1016/j.crad.2019.04.021.
Mabotuwana T, Hombal V, Dalal S, Hall CS, Gunn M. Determining adherence to follow-up imaging recommendations. J Am Coll Radiol. 2018;15(3, Part A):422–8. https://doi.org/10.1016/j.jacr.2017.11.022.
Dalal S, Hombal V, Weng W-H, Mankovich G, Mabotuwana T, Hall CS, Fuller J, Lehnert BE, Gunn ML. Determining follow-up imaging study using radiology reports. J Digit Imaging. 2020;33(1):121–30. https://doi.org/10.1007/s10278-019-00260-w.
Bobbin MD, Ip IK, Sahni VA, Shinagare AB, Khorasani R. Focal cystic pancreatic lesion follow-up recommendations after publication of ACR white paper on managing incidental findings. J Am Coll Radiol. 2017;14(6):757–64. https://doi.org/10.1016/j.jacr.2017.01.044.
Kwan JL, Yermak D, Markell L, Paul NS, Shojania KJ, Cram P. Follow up of incidental high-risk pulmonary nodules on computed tomography pulmonary angiography at care transitions. J Hosp Med. 2019;14(6):349–52. https://doi.org/10.12788/jhm.3128.
Mabotuwana T, Hall CS, Tieder J, Gunn ML. Improving quality of follow-up imaging recommendations in radiology. In: AMIA annual symposium proceedings, vol. 2017, pp. 1196–204 (2018). Accessed 30 Oct 2020.
Brown AD, Marotta TR. A natural language processing-based model to automate MRI brain protocol selection and prioritization. Acad Radiol. 2017;24(2):160–6. https://doi.org/10.1016/j.acra.2016.09.013.
Trivedi H, Mesterhazy J, Laguna B, Vu T, Sohn JH. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31(2):245–51. https://doi.org/10.1007/s10278-017-0021-3.
Zhang AY, Lam SSW, Liu N, Pang Y, Chan LL, Tang PH. Development of a radiology decision support system for the classification of MRI brain scans. In: 2018 IEEE/ACM 5th international conference on big data computing applications and technologies (BDCAT), pp. 107–15 (2018). https://doi.org/10.1109/BDCAT.2018.00021.
Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc. 2018;25(5):568–71. https://doi.org/10.1093/jamia/ocx125.
Yan Z, Ip IK, Raja AS, Gupta A, Kosowsky JM, Khorasani R. Yield of CT pulmonary angiography in the emergency department when providers override evidence-based clinical decision support. Radiology. 2016;282(3):717–25. https://doi.org/10.1148/radiol.2016151985.
Kang SK, Garry K, Chung R, Moore WH, Iturrate E, Swartz JL, Kim DC, Horwitz LI, Blecker S. Natural language processing for identification of incidental pulmonary nodules in radiology reports. J Am Coll Radiol. 2019;16(11):1587–94. https://doi.org/10.1016/j.jacr.2019.04.026.
Brown AD, Kachura JR. Natural language processing of radiology reports in patients with hepatocellular carcinoma to predict radiology resource utilization. J Am Coll Radiol. 2019;16(6):840–4. https://doi.org/10.1016/j.jacr.2018.12.004.
Grundmeier RW, Masino AJ, Casper TC, Dean JM, Bell J, Enriquez R, Deakyne S, Chamberlain JM, Alpern ER. Identification of long bone fractures in radiology reports using natural language processing to support healthcare quality improvement. Appl Clin Inform. 2016;7(4):1051–68. https://doi.org/10.4338/ACI-2016-08-RA-0129.
Heilbrun ME, Chapman BE, Narasimhan E, Patel N, Mowery D. Feasibility of natural language processing-assisted auditing of critical findings in chest radiology. J Am Coll Radiol. 2019;16(9, Part B):1299–304. https://doi.org/10.1016/j.jacr.2019.05.038.
Maros ME, Wenz R, Förster A, Froelich MF, Groden C, Sommer WH, Schönberg SO, Henzler T, Wenz H. Objective comparison using guideline-based query of conventional radiological reports and structured reports. In Vivo. 2018;32(4):843–9. https://doi.org/10.21873/invivo.11318.
Minn MJ, Zandieh AR, Filice RW. Improving radiology report quality by rapidly notifying radiologist of report errors. J Digit Imaging. 2015;28(4):492–8. https://doi.org/10.1007/s10278-015-9781-9.
Goldshtein I, Chodick G, Kochba I, Gal N, Webb M, Shibolet O. Identification and characterization of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2020;18(8):1887–9. https://doi.org/10.1016/j.cgh.2019.08.007.
Redman JS, Natarajan Y, Hou JK, Wang J, Hanif M, Feng H, Kramer JR, Desiderio R, Xu H, El-Serag HB, Kanwal F. Accurate identification of fatty liver disease in data warehouse utilizing natural language processing. Dig Dis Sci. 2017;62(10):2713–8. https://doi.org/10.1007/s10620-017-4721-9.
Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of case finding algorithms for hepatocellular cancer from administrative data and electronic health records using natural language processing. Med Care. 2016;54(2):9–14. https://doi.org/10.1097/MLR.0b013e3182a30373.
Li AY, Elliot N. Natural language processing to identify ureteric stones in radiology reports. J Med Imaging Radiat Oncol. 2019;63(3):307–10. https://doi.org/10.1111/1754-9485.12861.
Tan WK, Heagerty PJ. Surrogate-guided sampling designs for classification of rare outcomes from electronic medical records data. arXiv:1904.00412 [stat.ME] (2019). Accessed 30 Oct 2020.
Yadav K, Sarioglu E, Choi H-A, Cartwright WB, Hinds PS, Chamberlain JM. Automated outcome classification of computed tomography imaging reports for pediatric traumatic brain injury. Acad Emerg Med. 2016;23(2):171–8. https://doi.org/10.1111/acem.12859.
Mahan M, Rafter D, Casey H, Engelking M, Abdallah T, Truwit C, Oswood M, Samadani U. tbiExtractor: a framework for extracting traumatic brain injury common data elements from radiology reports. bioRxiv 585331 (2019). https://doi.org/10.1101/585331. Accessed 05 Dec 2020.
Brizzi K, Zupanc SN, Udelsman BV, Tulsky JA, Wright AA, Poort H, Lindvall C. Natural language processing to assess palliative care and end-of-life process measures in patients with breast cancer with leptomeningeal disease. Am J Hosp Palliat Med. 2019;37(5):371–6. https://doi.org/10.1177/1049909119885585.
Van Haren RM, Correa AM, Sepesi B, Rice DC, Hofstetter WL, Mehran RJ, Vaporciyan AA, Walsh GL, Roth JA, Swisher SG, Antonoff MB. Ground glass lesions on chest imaging: evaluation of reported incidence in cancer patients using natural language processing. Ann Thorac Surg. 2019;107(3):936–40. https://doi.org/10.1016/j.athoracsur.2018.09.016.
Noorbakhsh-Sabet N, Tsivgoulis G, Shahjouei S, Hu Y, Goyal N, Alexandrov AV, Zand R. Racial difference in cerebral microbleed burden among a patient population in the mid-south United States. J Stroke Cerebrovasc Dis. 2018;27(10):2657–61. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.05.031.
Gould MK, Tang T, Liu I-LA, Lee J, Zheng C, Danforth KN, Kosco AE, Di Fiore JL, Suh DE. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med. 2015;192(10):1208–14. https://doi.org/10.1164/rccm.201505-0990OC.
Huhdanpaa HT, Tan WK, Rundell SD, Suri P, Chokshi FH, Comstock BA, Heagerty PJ, James KT, Avins AL, Nedeljkovic SS, Nerenz DR, Kallmes DF, Luetmer PH, Sherman KJ, Organ NL, Griffith B, Langlotz CP, Carrell D, Hassanpour S, Jarvik JG. Using natural language processing of free-text radiology reports to identify type 1 modic endplate changes. J Digit Imaging. 2018;31(1):84–90. https://doi.org/10.1007/s10278-017-0013-3.
Masino AJ, Grundmeier RW, Pennington JW, Germiller JA, Crenshaw EB. Temporal bone radiology report classification using open source machine learning and natural langue processing libraries. BMC Med Inform Decis Mak. 2016;16(1):65. https://doi.org/10.1186/s12911-016-0306-3.
Valtchinov VI, Lacson R, Wang A, Khorasani R. Comparing artificial intelligence approaches to retrieve clinical reports documenting implantable devices posing MRI safety risks. J Am Coll Radiol. 2020;17(2):272–9. https://doi.org/10.1016/j.jacr.2019.07.018.
Zech J, Forde J, Titano JJ, Kaji D, Costa A, Oermann EK. Detecting insertion, substitution, and deletion errors in radiology reports using neural sequence-to-sequence models. Ann Transl Med. 2019. https://doi.org/10.21037/atm.2018.08.11.
Zhang Y, Merck D, Tsai EB, Manning CD, Langlotz CP. Optimizing the factual correctness of a summary: a study of summarizing radiology reports. arXiv:1911.02541 [cs.CL] (2019). Accessed 30 Oct 2020.
Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS. Toward complete structured information extraction from radiology reports using machine learning. J Digit Imaging. 2019;32(4):554–64. https://doi.org/10.1007/s10278-019-00234-y.
Cocos A, Qian T, Callison-Burch C, Masino AJ. Crowd control: effectively utilizing unscreened crowd workers for biomedical data annotation. J Biomed Inform. 2017;69:86–92. https://doi.org/10.1016/j.jbi.2017.04.003.
Ratner A, Hancock B, Dunnmon J, Goldman R, Ré C. Snorkel MeTaL: weak supervision for multi-task learning. In: Proceedings of the second workshop on data management for end-to-end machine learning. DEEM’18, vol. 3, pp. 1–4. ACM, Houston, TX, USA (2018). https://doi.org/10.1145/3209889.3209898. https://doi.org/10.1145/3209889.3209898. Accessed 30 Oct 2020.
Zhu H, Paschalidis IC, Hall C, Tahmasebi A. Context-driven concept annotation in radiology reports: anatomical phrase labeling. In: AMIA summits on translational science proceedings, vol. 2019, pp. 232–41 (2019). Accessed 30 Oct 2020.
Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space (2013). http://arxiv.org/abs/1301.3781. Accessed 7 Feb 2021.
Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp. 1532–43 (2014).
Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A. Advances in pre-training distributed word representations. In: Proceedings of the international conference on language resources and evaluation (LREC 2018) (2018).
Peters M.E, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep contextualized word representations. CoRR abs/1802.05365 (2018). \_eprint: 1802.05365.
Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
National Library of Medicine: Unified medical language system (2021). https://www.nlm.nih.gov/research/umls/index.html. Accessed 7 Feb 2021.
RSNA: RadLex (2021). http://radlex.org/. Accessed 7 Feb 2021.
National Library of Medicine: SNOMED CT, (2021). https://www.nlm.nih.gov/healthit/snomedct/index.html. Accessed 07 Feb 2021.
Bulu H, Sippo DA, Lee JM, Burnside ES, Rubin DL. Proposing new RadLex terms by analyzing free-text mammography reports. J Digit Imaging. 2018;31(5):596–603. https://doi.org/10.1007/s10278-018-0064-0.
Hassanpour S, Langlotz CP. Unsupervised topic modeling in a large free text radiology report repository. J Digit Imaging. 2016;29(1):59–62. https://doi.org/10.1007/s10278-015-9823-3.
Zhao Y, Fesharaki NJ, Liu H, Luo J. Using data-driven sublanguage pattern mining to induce knowledge models: application in medical image reports knowledge representation. BMC Med Inform Decis Mak. 2018;18(1):61. https://doi.org/10.1186/s12911-018-0645-3.
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46. https://doi.org/10.1177/001316446002000104.
Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589–604. https://doi.org/10.1109/JBHI.2017.2767063.
Chen D, Liu S, Kingsbury P, Sohn S, Storlie CB, Habermann EB, Naessens JM, Larson DW, Liu H. Deep learning and alternative learning strategies for retrospective real-world clinical data. npj Digit Med. 2019;2(1):1–5. https://doi.org/10.1038/s41746-019-0122-0.
Yang H, Li L, Yang R, Zhou Y. Towards automated knowledge discovery of hepatocellular carcinoma: extract patient information from Chinese clinical reports. In: Proceedings of the 2nd international conference on medical and health informatics. ICMHI ’18, pp. 111–6. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3239438.3239445. Accessed 30 Oct 2020.
Wood D.A, Lynch J, Kafiabadi S, Guilhem E, Busaidi A.A, Montvila A, Varsavsky T, Siddiqui J, Gadapa N, Townend M, Kiik M, Patel K, Barker G, Ourselin S, Cole JH, Booth TC. Automated labelling using an attention model for radiology reports of MRI scans (ALARM). arXiv:2002.06588 [cs.CV] (2020). Accessed 03 Dec 2020.
Ong CJ, Orfanoudaki A, Zhang R, Caprasse FPM, Hutch M, Ma L, Fard D, Balogun O, Miller MI, Minnig M, Saglam H, Prescott B, Greer DM, Smirnakis S, Bertsimas D. Machine learning and natural language processing methods to identify ischemic stroke, acuity and location from radiology reports. PLoS ONE. 2020;15(6):0234908. https://doi.org/10.1371/journal.pone.0234908.
Smit A, Jain S, Rajpurkar P, Pareek A, Ng A, Lungren M. Combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP), pp. 1500–19. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.emnlp-main.117. https://www.aclweb.org/anthology/2020.emnlp-main.117. Accessed 03 Dec 2020.
Grivas A, Alex B, Grover C, Tobin R, Whiteley W. Not a cute stroke: analysis of rule- and neural network-based information extraction systems for brain radiology reports. In: Proceedings of the 11th international workshop on health text mining and information analysis (2020).
Ettinger A. What BERT is not: lessons from a new suite of psycholinguistic diagnostics for language models. Trans Assoc Comput Linguist. 2020;8:34–48. https://doi.org/10.1162/tacl_a_00298.
Alsentzer E, Murphy J, Boag W, Weng W-H, Jindi D, Naumann T, McDermott M. Publicly available clinical BERT embeddings. In: Proceedings of the 2nd clinical natural language processing workshop, pp. 72–8. Association for Computational Linguistics, Minneapolis, Minnesota, USA (2019). https://doi.org/10.18653/v1/W19-1909. https://www.aclweb.org/anthology/W19-1909.
Smit A, Jain S, Rajpurkar P, Pareek A, Ng AY, Lungren MP. CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. CoRR abs/2004.09167 (2020). \_eprint: 2004.09167.
Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions. PLOS Med. 2018;15(11):1002707. https://doi.org/10.1371/journal.pmed.1002707.
Percha B, Zhang Y, Bozkurt S, Rubin D, Altman RB, Langlotz CP. Expanding a radiology lexicon using contextual patterns in radiology reports. J Am Med Inform Assoc. 2018;25(6):679–85. https://doi.org/10.1093/jamia/ocx152.
Tahmasebi AM, Zhu H, Mankovich G, Prinsen P, Klassen P, Pilato S, van Ommering R, Patel P, Gunn ML, Chang P. Automatic normalization of anatomical phrases in radiology reports using unsupervised learning. J Digit Imaging. 2019;32(1):6–18. https://doi.org/10.1007/s10278-018-0116-5.
Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology report annotation using intelligent word embeddings: applied to multi-institutional chest CT cohort. J Biomed Inform. 2018;77:11–20. https://doi.org/10.1016/j.jbi.2017.11.012.
Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag. 2018;13(3):55–75. https://doi.org/10.1109/MCI.2018.2840738.
Donnelly LF, Grzeszczuk R, Guimaraes CV, Zhang W, Bisset GS III. Using a natural language processing and machine learning algorithm program to analyze inter-radiologist report style variation and compare variation between radiologists when using highly structured versus more free text reporting. Curr Probl Diagn Radiol. 2019;48(6):524–30. https://doi.org/10.1067/j.cpradiol.2018.09.005.
Xie Z, Yang Y, Wang M, Li M, Huang H, Zheng D, Shu R, Ling T. Introducing information extraction to radiology information systems to improve the efficiency on reading reports. Methods Inf Med. 2019;58(2–03):94–106. https://doi.org/10.1055/s-0039-1694992.
Zech J, Pain M, Titano J, Badgeley M, Schefflein J, Su A, Costa A, Bederson J, Lehar J, Oermann EK. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287(2):570–80. https://doi.org/10.1148/radiol.2018171093.
Yim W, Kwan SW, Johnson G, Yetisgen M. Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports. In: AMIA annual symposium proceedings, vol. 2017, pp. 1858–67 (2018). Accessed 30 Oct 2020.
Payrovnaziri SN, Chen Z, Rengifo-Moreno P, Miller T, Bian J, Chen JH, Liu X, He Z. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc. 2020;27(7):1173–85. https://doi.org/10.1093/jamia/ocaa053.
Dong H, Suárez-Paniagua V, Whiteley W, Wu H. Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation. J Biomed Inform. 2021. https://doi.org/10.1016/j.jbi.2021.103728.