First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger

Applied Surface Science - Tập 494 - Trang 859-866 - 2019
Hao Cui1,2, Xiaoxing Zhang1,3, Yi Li4, Dachang Chen4, Ying Zhang2
1State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
3Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan, 430068, China
4School of Electrical Engineering, Wuhan University, Wuhan 430072, China

Tài liệu tham khảo

Tang, 2013, MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies[J], J. Mater. Chem. A, 2, 360, 10.1039/C3TA13584E Zhang, 2016, 2D materials beyond graphene for high-performance energy storage applications[J], Adv. Energy Mater., 6, 10.1002/aenm.201600671 Bhimanapati, 2015, Recent advances in two-dimensional materials beyond graphene[J], ACS Nano, 9, 11509, 10.1021/acsnano.5b05556 Tan, 2017, Recent advances in ultrathin two-dimensional nanomaterials[J], Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558 Jiang, 2018, First principles study on the CO oxidation on Mn-embedded Divacancy graphene[J], Front. Chem., 6, 187, 10.3389/fchem.2018.00187 Zhang, 2017, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation[J], J. Mater. Chem. A, 5, 10.1039/C7TA07001B Pierucci, 2018, Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: electronic properties and band structure[J], Appl. Phys. Lett., 112, 10.1063/1.5029220 dos Santos, 2016, Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties[J], Nanotechnology, 27, 10.1088/0957-4484/27/14/145601 Sun, 2016, Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J], Adv. Mater., 28, 2287, 10.1002/adma.201502595 Huang, 2011, Graphene-based materials: synthesis, characterization, properties, and applications[J], Small, 7, 1876, 10.1002/smll.201002009 Guo, 2018, Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study[J], Appl. Surf. Sci., 455, 484, 10.1016/j.apsusc.2018.05.208 Chen, 2019, Density functional theory study of small ag cluster adsorbed on graphyne[J], Appl. Surf. Sci., 465, 93, 10.1016/j.apsusc.2018.09.096 Sun, 2014, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J], ACS Nano, 8, 4133, 10.1021/nn500508c Ayari, 2017, Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications[J], Sci. Rep., 7, 10.1038/s41598-017-15065-6 Sarmazdeh, 2016, First-principles study of optical properties of InN nanosheet[J], Int. J. Mod. Phys. B, 30, 10.1142/S0217979216501174 Lu, 2018, Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study[J], J. Phys. D. Appl. Phys., 51, 10.1088/1361-6463/aaa3b3 Caliskan, 2015, First principles study on the spin unrestricted electronic structure properties of transition metal doped InN nanoribbons[J], Superlattice. Microst., 84, 170, 10.1016/j.spmi.2015.05.004 Maleyre, 2010, Optical investigations on Si-doped InN films[J], Phys. Status Solidi, 2, 1379, 10.1002/pssc.200460461 Yu, 2005, On the crystalline structure, stoichiometry and band gap of InN thin films[J], Appl. Phys. Lett., 86, 617, 10.1063/1.1861513 Sun, 2017, Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study[J], Appl. Surf. Sci., 404, 291, 10.1016/j.apsusc.2017.01.264 Chen, 2019, Pristine and cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study[J], J. Hazard. Mater., 363, 346, 10.1016/j.jhazmat.2018.10.006 Cui, 2018, Pt & Pd decorated CNT as a workable media for SOF2 sensing: a DFT study[J], Appl. Surf. Sci., 471, 335, 10.1016/j.apsusc.2018.12.016 Ao, 2008, Enhancement of CO detection in Al doped graphene[J], Chem. Phys. Lett., 461, 276, 10.1016/j.cplett.2008.07.039 Cui, 2019, Rh-doped MoSe2 as toxic gas scavenger: a first-principles study[J], Nanoscale Adv., 2019, 772, 10.1039/C8NA00233A Ma, 2016, The adsorption of CO and NO on the MoS2 monolayer doped with au, Pt, Pd, or Ni: a first-principles study[J], Appl. Surf. Sci., 383, 98, 10.1016/j.apsusc.2016.04.171 Yuwen, 2014, General synthesis of noble metal (au, ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J], Nanoscale, 6, 5762, 10.1039/C3NR06084E Zhao, 2016, Adsorption of gas molecules on cu impurities embedded monolayer MoS2: a first-principles study[J], Appl. Surf. Sci., 382, 280, 10.1016/j.apsusc.2016.04.158 Wei, 2018, A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer[J], Nanomaterials, 8, 646, 10.3390/nano8090646 Delley, 2000, From molecules to solids with the DMol3 approach[J], J. Chem. Phys., 113, 7756, 10.1063/1.1316015 Cui, 2018, Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study[J], Mrs Communications, 8, 189, 10.1557/mrc.2018.20 Tkatchenko, 2009, Dispersion-corrected Møller-Plesset second-order perturbation theory[J], J. Chem. Phys., 131, 171, 10.1063/1.3213194 Saoud, 2012, Structural, electronic and vibrational properties of InN under high pressure[J], Phys. B Condens. Matter, 407, 1008, 10.1016/j.physb.2011.12.129 Guo, 2018, Transition metal (Pd, Pt, ag, au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study[J], Appl. Surf. Sci., 455, 106, 10.1016/j.apsusc.2018.05.116 Li, 2018, Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: a first-principles study[J], Appl. Surf. Sci., 443, 10.1016/j.apsusc.2018.02.252 Fan, 2017, A DFT study of transition metal (Fe, co, Ni, cu, ag, au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J], Comput. Mater. Sci., 138, 255, 10.1016/j.commatsci.2017.06.029 Late, 2014, Single-layer MoSe2 based NH3 gas sensor[J], Appl. Phys. Lett., 105, 25, 10.1063/1.4903358 Cui, 2019, Repairing the N-vacancy in an InN monolayer using NO molecules: a first-principles study[J], Nanoscale Adv., 1, 2003, 10.1039/C9NA00041K Cui, 2019, Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J], Sustain. Mater. Technol., 20 Wu, 2017, The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, cu, ag and au) on a MoS2 monolayer: a first-principles study[J], Phys. Chem. Chem. Phys., 19, 10.1039/C7CP04021K Giovanni, 2012, Noble metal (Pd, Ru, Rh, Pt, au, ag) doped graphene hybrids for electrocatalysis[J], Nanoscale, 4, 5002, 10.1039/c2nr31077e Chen, 2018, Noble metal (Pt or au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study[J], Appl. Phys. A Mater. Sci. Process., 124, 194, 10.1007/s00339-018-1629-y Sharma, 2018, Sensing of CO and NO on cu-doped MoS2 monolayer based single Electron transistor: a first principles study[J], IEEE Sensors J., 18, 2853, 10.1109/JSEN.2018.2801865 Ma, 2016, Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules[J], J. Mater. Chem. C, 4, 7093, 10.1039/C6TC01746K Rao, 2016, Adsorption mechanism of graphene-like ZnO monolayer towards CO2molecules: enhanced CO2capture[J], Nanotechnology, 27, 10.1088/0957-4484/27/1/015502 Giovannetti, 2008, Doping graphene with metal contacts[J], Phys. Rev. Lett., 101, 26803, 10.1103/PhysRevLett.101.026803 Cui, 2019, Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method[J], Appl. Surf. Sci., 470, 1035, 10.1016/j.apsusc.2018.11.230 Verlag, Springer, 2006, Semiconductor physical electronics[J], Semicond. Phys. Electron., 28, 363 Zhang, 2015, Experimental sensing and density functional theory study of H2S and SOF2 adsorption on au-modified graphene[J], Adv. Sci., 2, 10.1002/advs.201500101