First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger
Tài liệu tham khảo
Tang, 2013, MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies[J], J. Mater. Chem. A, 2, 360, 10.1039/C3TA13584E
Zhang, 2016, 2D materials beyond graphene for high-performance energy storage applications[J], Adv. Energy Mater., 6, 10.1002/aenm.201600671
Bhimanapati, 2015, Recent advances in two-dimensional materials beyond graphene[J], ACS Nano, 9, 11509, 10.1021/acsnano.5b05556
Tan, 2017, Recent advances in ultrathin two-dimensional nanomaterials[J], Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558
Jiang, 2018, First principles study on the CO oxidation on Mn-embedded Divacancy graphene[J], Front. Chem., 6, 187, 10.3389/fchem.2018.00187
Zhang, 2017, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation[J], J. Mater. Chem. A, 5, 10.1039/C7TA07001B
Pierucci, 2018, Van der Waals epitaxy of two-dimensional single-layer h-BN on graphite by molecular beam epitaxy: electronic properties and band structure[J], Appl. Phys. Lett., 112, 10.1063/1.5029220
dos Santos, 2016, Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties[J], Nanotechnology, 27, 10.1088/0957-4484/27/14/145601
Sun, 2016, Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J], Adv. Mater., 28, 2287, 10.1002/adma.201502595
Huang, 2011, Graphene-based materials: synthesis, characterization, properties, and applications[J], Small, 7, 1876, 10.1002/smll.201002009
Guo, 2018, Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study[J], Appl. Surf. Sci., 455, 484, 10.1016/j.apsusc.2018.05.208
Chen, 2019, Density functional theory study of small ag cluster adsorbed on graphyne[J], Appl. Surf. Sci., 465, 93, 10.1016/j.apsusc.2018.09.096
Sun, 2014, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J], ACS Nano, 8, 4133, 10.1021/nn500508c
Ayari, 2017, Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications[J], Sci. Rep., 7, 10.1038/s41598-017-15065-6
Sarmazdeh, 2016, First-principles study of optical properties of InN nanosheet[J], Int. J. Mod. Phys. B, 30, 10.1142/S0217979216501174
Lu, 2018, Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study[J], J. Phys. D. Appl. Phys., 51, 10.1088/1361-6463/aaa3b3
Caliskan, 2015, First principles study on the spin unrestricted electronic structure properties of transition metal doped InN nanoribbons[J], Superlattice. Microst., 84, 170, 10.1016/j.spmi.2015.05.004
Maleyre, 2010, Optical investigations on Si-doped InN films[J], Phys. Status Solidi, 2, 1379, 10.1002/pssc.200460461
Yu, 2005, On the crystalline structure, stoichiometry and band gap of InN thin films[J], Appl. Phys. Lett., 86, 617, 10.1063/1.1861513
Sun, 2017, Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study[J], Appl. Surf. Sci., 404, 291, 10.1016/j.apsusc.2017.01.264
Chen, 2019, Pristine and cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study[J], J. Hazard. Mater., 363, 346, 10.1016/j.jhazmat.2018.10.006
Cui, 2018, Pt & Pd decorated CNT as a workable media for SOF2 sensing: a DFT study[J], Appl. Surf. Sci., 471, 335, 10.1016/j.apsusc.2018.12.016
Ao, 2008, Enhancement of CO detection in Al doped graphene[J], Chem. Phys. Lett., 461, 276, 10.1016/j.cplett.2008.07.039
Cui, 2019, Rh-doped MoSe2 as toxic gas scavenger: a first-principles study[J], Nanoscale Adv., 2019, 772, 10.1039/C8NA00233A
Ma, 2016, The adsorption of CO and NO on the MoS2 monolayer doped with au, Pt, Pd, or Ni: a first-principles study[J], Appl. Surf. Sci., 383, 98, 10.1016/j.apsusc.2016.04.171
Yuwen, 2014, General synthesis of noble metal (au, ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J], Nanoscale, 6, 5762, 10.1039/C3NR06084E
Zhao, 2016, Adsorption of gas molecules on cu impurities embedded monolayer MoS2: a first-principles study[J], Appl. Surf. Sci., 382, 280, 10.1016/j.apsusc.2016.04.158
Wei, 2018, A DFT study on the adsorption of H2S and SO2 on Ni doped MoS2 monolayer[J], Nanomaterials, 8, 646, 10.3390/nano8090646
Delley, 2000, From molecules to solids with the DMol3 approach[J], J. Chem. Phys., 113, 7756, 10.1063/1.1316015
Cui, 2018, Carbon-chain inserting effect on electronic behavior of single-walled carbon nanotubes: a density functional theory study[J], Mrs Communications, 8, 189, 10.1557/mrc.2018.20
Tkatchenko, 2009, Dispersion-corrected Møller-Plesset second-order perturbation theory[J], J. Chem. Phys., 131, 171, 10.1063/1.3213194
Saoud, 2012, Structural, electronic and vibrational properties of InN under high pressure[J], Phys. B Condens. Matter, 407, 1008, 10.1016/j.physb.2011.12.129
Guo, 2018, Transition metal (Pd, Pt, ag, au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study[J], Appl. Surf. Sci., 455, 106, 10.1016/j.apsusc.2018.05.116
Li, 2018, Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: a first-principles study[J], Appl. Surf. Sci., 443, 10.1016/j.apsusc.2018.02.252
Fan, 2017, A DFT study of transition metal (Fe, co, Ni, cu, ag, au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J], Comput. Mater. Sci., 138, 255, 10.1016/j.commatsci.2017.06.029
Late, 2014, Single-layer MoSe2 based NH3 gas sensor[J], Appl. Phys. Lett., 105, 25, 10.1063/1.4903358
Cui, 2019, Repairing the N-vacancy in an InN monolayer using NO molecules: a first-principles study[J], Nanoscale Adv., 1, 2003, 10.1039/C9NA00041K
Cui, 2019, Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J], Sustain. Mater. Technol., 20
Wu, 2017, The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, cu, ag and au) on a MoS2 monolayer: a first-principles study[J], Phys. Chem. Chem. Phys., 19, 10.1039/C7CP04021K
Giovanni, 2012, Noble metal (Pd, Ru, Rh, Pt, au, ag) doped graphene hybrids for electrocatalysis[J], Nanoscale, 4, 5002, 10.1039/c2nr31077e
Chen, 2018, Noble metal (Pt or au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2: a DFT study[J], Appl. Phys. A Mater. Sci. Process., 124, 194, 10.1007/s00339-018-1629-y
Sharma, 2018, Sensing of CO and NO on cu-doped MoS2 monolayer based single Electron transistor: a first principles study[J], IEEE Sensors J., 18, 2853, 10.1109/JSEN.2018.2801865
Ma, 2016, Repairing sulfur vacancies in the MoS2 monolayer by using CO, NO and NO2 molecules[J], J. Mater. Chem. C, 4, 7093, 10.1039/C6TC01746K
Rao, 2016, Adsorption mechanism of graphene-like ZnO monolayer towards CO2molecules: enhanced CO2capture[J], Nanotechnology, 27, 10.1088/0957-4484/27/1/015502
Giovannetti, 2008, Doping graphene with metal contacts[J], Phys. Rev. Lett., 101, 26803, 10.1103/PhysRevLett.101.026803
Cui, 2019, Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method[J], Appl. Surf. Sci., 470, 1035, 10.1016/j.apsusc.2018.11.230
Verlag, Springer, 2006, Semiconductor physical electronics[J], Semicond. Phys. Electron., 28, 363
Zhang, 2015, Experimental sensing and density functional theory study of H2S and SOF2 adsorption on au-modified graphene[J], Adv. Sci., 2, 10.1002/advs.201500101