The dimension of some sets defined in terms of f-expansions
Tài liệu tham khảo
Billingsley, P.: Hausdorff dimension in probability theory. Illinois J. Math. 4, 187–209 (1960).
— Hausdorff dimension in probability theory, II. Illinois J. Math. 5, 291–298 (1961).
Bissinger, B. H.: A generalization of continued fractions. Bull. Amer. math. Soc. 50, 868–876 (1944).
Chung, K. L.: A note on the ergodic theorem of information theory. Ann. math. Statistics 32, 612–614 (1961).
Everett, C. I.: Representations for real numbers. Bull. Amer. math. Soc. 52, 861–869 (1946).
Good, I. J.: The fractional dimensional theory of continued fractions. Proc. Cambridge philos. Soc. 37, 199–228 (1941).
Jarnik, V.: Zur metrischen Theorie der diophantischen Approximationen. Prace mat. fiz. 36, 91–106 (1928).
Khintchine, A. Ya.: Continued fractions. P. Noordhoff, Ltd., The Netherlands.
Kinney, J. R.: Singular functions associated with Markov chains. Proc. Amer. math. Soc. 9, 603–603 (1958).
—: Note on a singular function of Minkowski. Proc. Amer. math. Soc. 11, 788–794 (1960).
McMillan, B.: The basic theorems of information theory. Ann. math. Statistics 24, 196–219 (1953).
Parry, W.: On Rohlin's formula for entropy. Acta math. Acad. Sci. Hungar. 15, 107–113 (1964).
Rényi, A.: Representations for real numbers and their ergodic properties. Acta math. Acad. Sci. Hungar. 8, 477–493 (1957).
Rogers, C. A.: Some sets of continued fractions. Proc. London math. Soc. III. Ser 14, 29–44 (1964).
Rohlin, V. A.: Exact endomorphisms of a Lebesgue space (in Russian). Izvestyor Akad. Nauk. SSSR, Ser. math. 24, 499–530 (1960).
Ryll-Nardzewski, C.: On the ergodic theorems, II ergodic theory of continued fractions. Studia math. 12, 74–79 (1951).
Shannon, C.: A mathematical theory of communication. Bell System tech. J. 27, 379–423 (1948).