Developmental toxicity of Fe 3 O 4 nanoparticles on cysts and three larval stages of Artemia salina
Tài liệu tham khảo
Arsalani, 2010, Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent, Express Polym. Lett., 4, 329, 10.3144/expresspolymlett.2010.42
Arulvasu, 2014, Toxicity effect of silver nanoparticles in brine shrimp Artemia, Thescientificworldjournal, 2014, 256919, 10.1155/2014/256919
Ates, 2013, Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity, Environ. Sci. Process. Impacts, 225, 10.1039/C2EM30540B
Ates, 2016, Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to Artemia salina in seawater, Water, Air, & Soil Pollut., 227, 1, 10.1007/s11270-016-2771-9
Ates, 2015, Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae, Environ. Toxicol., 30, 109, 10.1002/tox.21917
Barahona, 1996, Comparative sensitivity of three age classes of Artemia salina larvae to several phenolic compounds, Bull. Environ. Contam. Toxicol., 56, 271, 10.1007/s001289900041
Begum, 2009, Removal of chromium(VI) ions from aqueous solutions and industrial effluents using magnetic Fe 3 O 4 nanoparticles, Adsorpt. Sci. Technol., 27, 701, 10.1260/0263-6174.27.7.701
Blinova, 2010, Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environ. Pollut., 158, 41, 10.1016/j.envpol.2009.08.017
Caldwell, 2003, The use of a brine shrimp ( Artemia salina ) bioassay to assess the toxicity of diatom extracts and short chain aldehydes, Toxicon Official J. Int. Soc. Toxinology, 42, 301, 10.1016/S0041-0101(03)00147-8
Cazenave, 2006, Differ. Detoxif. Antioxid. response diverse organs Corydoras paleatus Exp. Expo. microcystin-RR, 76, 1
Chen, 2012, Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on in aquatic environment, Open J. Ecol., 02, 21, 10.4236/oje.2012.21003
Gajbhiye, 1990, Toxicity of heavy metals to brine shrimp Artemia, J. Indian Fish. Assoc., 20
Gambardella, 2014, Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses, Environ. Monit. Assess., 186, 4249, 10.1007/s10661-014-3695-8
Gil, 2010, Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future, Acs Nano, 4, 5527, 10.1021/nn1025687
Heinlaan, 2008, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71, 1308, 10.1016/j.chemosphere.2007.11.047
Kokkali, 2011, Monitoring the effect of metal ions on the mobility of Artemia salina nauplii, Biosensors, 1, 36, 10.3390/bios1020036
Li, 2012, Toxicity of nano zinc oxide to mitochondria, Toxicol. Res., 1, 137, 10.1039/c2tx20016c
Libralato, 2014, The case of Artemia spp. in nanoecotoxicology, Mar. Environ. Res., 101, 38, 10.1016/j.marenvres.2014.08.002
Lin, 2015, Introduction: nanoparticles in medicine, Chem. Rev., 115, 10407, 10.1021/acs.chemrev.5b00534
Lin, 2012, Dose-dependent cytotoxicity and oxidative stress induced by “naked” Fe_3O_4 nanoparticles in human hepatocyte, Chem. Res. Chin. Univ., 28, 123
Linh, 2009
Little, 1990, Behavioral indicators of sublethal toxicity in rainbow trout, Archives Environ. Contam. Toxicol., 19, 380, 10.1007/BF01054982
Lv, 2008, Novel nanocomposite of nano fe(3)o(4) and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells, Langmuir, 24, 2151, 10.1021/la702845s
Mesarič, 2015, High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae, Aquat. Toxicol., 163, 121, 10.1016/j.aquatox.2015.03.014
Nunes, 2006, Use of the genus Artemia in ecotoxicity testing, Environ. Pollut., 144, 453, 10.1016/j.envpol.2005.12.037
Ozkan, 2015, Determination of TiO2 and AgTiO 2 nanoparticles in Artemia salina: toxicity, morphological changes, uptake and depuration, Bull. Environ. Contam. Toxicol., 125, 1
Park, 2014, Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells, Toxicol. Vitro, 28, 1402, 10.1016/j.tiv.2014.07.010
Ramírez, 2015
Reeve, 1963, The filter-feeding of Artemia: II, 40, 207
Scown, 2010, Review: do engineered nanoparticles pose a significant threat to the aquatic environment, Crit. Rev. Toxicol., 40, 653, 10.3109/10408444.2010.494174
Sorgeloos, 1986
Sorgeloos, 1979, The use of Artemia nauplii for toxicity tests—a critical anaysis, Ecotoxicol. Environ. Saf., 2, 249, 10.1016/S0147-6513(78)80003-7
Sun, 2011, Cytotoxicity and mitochondrial damage caused by silica nanoparticles, Toxicol. Vitro Int. J. Publ. Assoc. Bibra, 25, 1619, 10.1016/j.tiv.2011.06.012
Thorkelsson, 2015, Self-assembly and applications of anisotropic nanomaterials: a review, Nano Today, 10, 48, 10.1016/j.nantod.2014.12.005
Wang, 1998, FTIR analysis of well-defined α-Fe 2 O 3 particles, Colloids Surfaces A Physicochem. Eng. Aspects, 134, 281, 10.1016/S0927-7757(97)00102-7
Wang, 2013, Oxidative-damage effect of Fe 3 O 4 nanoparticles on mouse hepatic and brain cells in vivo, Front. Biol., 8, 549, 10.1007/s11515-013-1277-8
Wolfbeis, 2015, An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev., 44, 4743, 10.1039/C4CS00392F
Xiao, 2016, Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances, Microchim. Acta, 183, 1, 10.1007/s00604-016-1928-y
Xuan, 2011, Synthesis of biocompatible, mesoporous Fe(3)O(4) nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications, ACS Appl. Mater. interfaces, 3, 237, 10.1021/am1012358
Yu, 2013, Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation, Toxicol. Vitro, 27, 1187, 10.1016/j.tiv.2013.02.010
Zhu, 2017, Toxicity evaluation of graphene oxide on cysts and three larval stages of Artemia salina, Sci. Total Environ., 595, 101, 10.1016/j.scitotenv.2017.03.224
Zhu, 2017, Toxicological effects of graphene oxide on Saccharomyces cerevisiae, Toxicol. Res., 6, 535, 10.1039/C7TX00103G
Zhu, 2016, Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: the uptake kinetics and mechanisms and the toxic responses, J. Hazard. Mater., 318, 650, 10.1016/j.jhazmat.2016.07.049