Finite difference method for solving fractional differential equations at irregular meshes

Mathematics and Computers in Simulation - Tập 193 - Trang 204-216 - 2022
Antonio M. Vargas1
1Departamento de Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 28040, Spain

Tài liệu tham khảo

Alshbool, 2021, Fractional Bernstein series solution of fractional diffusion equations with error estimate, Axioms, 10 Baeumer, 2007, Fractional reproduction-dispersal equations and heavy tail dispersal kernels, Bull. Math. Biol., 69, 2281, 10.1007/s11538-007-9220-2 Benito, 2020, Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method, Appl. Numer. Math., 157, 356, 10.1016/j.apnum.2020.06.011 Benito, 2001, Influence of several factors in the generalized finite difference method, Appl. Math. Model., 25, 1039, 10.1016/S0307-904X(01)00029-4 Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13, 529, 10.1111/j.1365-246X.1967.tb02303.x Cheng, 2019, On multivariate fractional Taylor’s and Cauchy’s mean value theorem, J. Math. Study, 52, 38, 10.4208/jms.v52n1.19.04 Gavete, 2017, Solving second order non-linear elliptic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 318, 378, 10.1016/j.cam.2016.07.025 Khader, 2011, On the numerical solutions for the fractional diffusion equation, Commmun. Nonlinear Sci. Numer. Simul., 16, 2535, 10.1016/j.cnsns.2010.09.007 Kilbas, 2006 Lancaster, 1986 Pasca, 2019, Approximate solutions for the Bagley–Torvik fractional equation with boundary conditions using the Polynomial Least Squares Method, 01011 Podlubny, 1999 Saadatmandim, 2011, A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl., 62, 1135, 10.1016/j.camwa.2011.04.014 Salehi, 2018, Numerical solution of space fractional diffusion equation by the method of lines and splines, Appl. Math. Comput., 336, 465 Tadjeran, 2006, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 205, 10.1016/j.jcp.2005.08.008 Torvik, 1984, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, 294, 10.1115/1.3167615 Ureña, 2019, Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 354, 221, 10.1016/j.cam.2018.02.016 Usero, 2008