Finite difference method for solving fractional differential equations at irregular meshes
Tài liệu tham khảo
Alshbool, 2021, Fractional Bernstein series solution of fractional diffusion equations with error estimate, Axioms, 10
Baeumer, 2007, Fractional reproduction-dispersal equations and heavy tail dispersal kernels, Bull. Math. Biol., 69, 2281, 10.1007/s11538-007-9220-2
Benito, 2020, Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method, Appl. Numer. Math., 157, 356, 10.1016/j.apnum.2020.06.011
Benito, 2001, Influence of several factors in the generalized finite difference method, Appl. Math. Model., 25, 1039, 10.1016/S0307-904X(01)00029-4
Caputo, 1967, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astron. Soc., 13, 529, 10.1111/j.1365-246X.1967.tb02303.x
Cheng, 2019, On multivariate fractional Taylor’s and Cauchy’s mean value theorem, J. Math. Study, 52, 38, 10.4208/jms.v52n1.19.04
Gavete, 2017, Solving second order non-linear elliptic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 318, 378, 10.1016/j.cam.2016.07.025
Khader, 2011, On the numerical solutions for the fractional diffusion equation, Commmun. Nonlinear Sci. Numer. Simul., 16, 2535, 10.1016/j.cnsns.2010.09.007
Kilbas, 2006
Lancaster, 1986
Pasca, 2019, Approximate solutions for the Bagley–Torvik fractional equation with boundary conditions using the Polynomial Least Squares Method, 01011
Podlubny, 1999
Saadatmandim, 2011, A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl., 62, 1135, 10.1016/j.camwa.2011.04.014
Salehi, 2018, Numerical solution of space fractional diffusion equation by the method of lines and splines, Appl. Math. Comput., 336, 465
Tadjeran, 2006, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 205, 10.1016/j.jcp.2005.08.008
Torvik, 1984, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, 294, 10.1115/1.3167615
Ureña, 2019, Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM), J. Comput. Appl. Math., 354, 221, 10.1016/j.cam.2018.02.016
Usero, 2008