Flexural characterization and ductility assessment of small-scale mortar beams reinforced with 3D-printed polymers
Tài liệu tham khảo
Kranz, 2015, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, J Laser Appl, 27, S14001, 10.2351/1.4885235
Hague, 2003, Design opportunities with rapid manufacturing, Assem Autom, 23, 346, 10.1108/01445150310698643
Hague, 2003, Implications on design of rapid manufacturing, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 217, 25, 10.1243/095440603762554587
Vayre, 2012, Metallic additive manufacturing: state-of-the-art review and prospects, Mech Ind, 13, 89, 10.1051/meca/2012003
Quan, 2018, Printing direction dependence of mechanical behavior of additively manufactured 3D preforms and composites, Compos Struct, 184, 917, 10.1016/j.compstruct.2017.10.055
Ferreira, 2017, Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos B Eng, 124, 88, 10.1016/j.compositesb.2017.05.013
Valino, 2019, Advances in 3D printing of thermoplastic polymer composites and nanocomposites, Prog Polym Sci, 98, 101162, 10.1016/j.progpolymsci.2019.101162
Kai CC, Fai LK, Rapid Prototyping. WORLD SCIENTIFIC, 2000Available: https://doi.org/10.1142/4605. 10.1142/4605.
Novakova-Marcincinova L, Novak-Marcincin J, Barna J, Torok J, “Special materials used in FDM rapid prototyping technology application,” in June 2012, pp. 73-76. doi:10.1109/INES.2012.6249805.
Dudek P, “FDM 3D printing technology in manufacturing composite elements,” Archives of Metallurgy and Materials, (Vol. 58, iss. 4), pp. 1415-1418, 2013. Available: https://www.infona.pl//resource/bwmeta1.element.baztech-09aa96d2-9dc4-4cae-bd09-e57b2cc16e66. doi:10.2478/amm-2013-0186.
Tekinalp, 2014, Highly oriented carbon fiber–polymer composites via additive manufacturing, Compos Sci Technol, 105, 144, 10.1016/j.compscitech.2014.10.009
Masood SH, “10.04 - advances in fused deposition modeling,” In Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne and B. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 69-91Available: https://www.sciencedirect.com/science/article/pii/B9780080965321010025.
Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV, “Nanofiber-reinforced polymers prepared by fused deposition modeling,” Journal of Applied Polymer Science, vol. 89, (11), pp. 3081-3090, 2003. doi:10.1002/app.12496.
Karsli NG, Aytac A, “Composites Part B Engineering,” vol. 51, pp. 270-275, August 1, 2013. Available: https://www.sciencedirect.com/science/article/pii/S135983681300125X.
Kinet, 2014, Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions, Sensors, 14, 7394, 10.3390/s140407394
Shubhra, 2013, Mechanical properties of polypropylene composites: A review, J Thermoplast Compos Mater, 26, 362, 10.1177/0892705711428659
Arab MG, Omar M, Alotaibi E, Mostafa O, Naeem M, Badr O, “Bio-Inspired 3D-Printed Honeycomb for Soil Reinforcement,” pp. 262-271, /02/21, 2020. doi: 10.1061/9780784482834.029.
Katzer J, Szatkiewicz T, “Effect of 3D Printed Spatial Reinforcement on Flexural Characteristics of Conventional Mortar,” Materials, vol. 13, (14), pp. 3133, 2020. doi:10.3390/ma13143133.
Yuan, 2018, Form finding for 3d printed pedestrian bridges
Farina, 2016, On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers, Compos B Eng, 90, 76, 10.1016/j.compositesb.2015.12.006
Xu Y, Šavija B, “Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties,” Composites Part B: Engineering, vol. 174, pp. 107011, 2019. Available: https://www.sciencedirect.com/science/article/pii/S1359836819303245. doi:10.1016/j.compositesb.2019.107011.
Salazar B, Aghdasi P, Williams ID, Ostertag CP, Taylor HK, “Polymer lattice-reinforcement for enhancing ductility of concrete,” Materials & Design, vol. 196, pp. 109184, November 1, 2020. Available: https://www.sciencedirect.com/science/article/pii/S026412752030719X. doi:10.1016/j.matdes.2020.109184.
Issa MS, Metwally IM, Elzeiny SM, “Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars,” Engineering Structures, vol. 33, (5), pp. 1754-1763, May 1, 2011. Available: https://www.sciencedirect.com/science/article/pii/S014102961100085X. doi:10.1016/j.engstruct.2011.02.014.
Vijay PV, GangaRao HVS, “Bending Behavior and Deformability of Glass Fiber-Reinforced Polymer Reinforced Concrete Members,” Sj, vol. 98, (6), pp. 834-842, /11/01, 2001. Available: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10750. doi:10.14359/10750.
Jaeger LG, Mufti AA, Tadros G, “The concept of the overall performance factor in rectangular-section reinforced concrete members,” In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 1997, pp. 551-559.
Toutanji, 1999, Performance of concrete beams prestressed with aramid fiber-reinforced polymer tendons, Compos Struct, 44, 63, 10.1016/S0263-8223(98)00126-3
Naaman, 1995, 45 structural ductility of concrete beams prestressed with frp tendons, 379
Cohn MZ, Bartlett M, “Computer-Simulated Flexural Tests of Partially Prestressed Concrete Sections,” Journal of the Structural Division, vol. 108, (12), pp. 2747-2765, /12/01, 1982. doi:10.1061/JSDEAG.0006103.
Azizinamini A, Pavel R, Hatfield E, Ghosh S, “Behavior of Lap-Spliced Reinforcing Bars Embedded in High-Strength Concrete,” ACI Structural Journal, 1999. Available: https://www.semanticscholar.org/paper/Behavior-of-Lap-Spliced-Reinforcing-Bars-Embedded-Azizinamini-Pavel/dfdba163b8e6c5784c0215879d6f90d3324f972f?p2df. doi:10.14359/737.
Grace, 1998, Behavior and Ductility of Simple and Continuous FRP Reinforced Beams, J Compos Constr, 2, 186, 10.1061/(ASCE)1090-0268(1998)2:4(186)
American Society for Testing and Materials. Committee C-1 on Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens). ASTM International, 2013.
The Mathworks Inc., “MATLAB,” vol. R2021a, 2021.
Tanikella, 2017, Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Addit Manuf, 15, 40