Flexural characterization and ductility assessment of small-scale mortar beams reinforced with 3D-printed polymers

Structures - Tập 45 - Trang 1751-1761 - 2022
M. Talha Junaid1, Ahmed Shweiki1, Samer Barakat1, Mohamad Alhalabi1, Omar Mostafa1
1Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates

Tài liệu tham khảo

Kranz, 2015, Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4, J Laser Appl, 27, S14001, 10.2351/1.4885235 Hague, 2003, Design opportunities with rapid manufacturing, Assem Autom, 23, 346, 10.1108/01445150310698643 Hague, 2003, Implications on design of rapid manufacturing, Proc Inst Mech Eng, Part C: J Mech Eng Sci, 217, 25, 10.1243/095440603762554587 Vayre, 2012, Metallic additive manufacturing: state-of-the-art review and prospects, Mech Ind, 13, 89, 10.1051/meca/2012003 Quan, 2018, Printing direction dependence of mechanical behavior of additively manufactured 3D preforms and composites, Compos Struct, 184, 917, 10.1016/j.compstruct.2017.10.055 Ferreira, 2017, Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers, Compos B Eng, 124, 88, 10.1016/j.compositesb.2017.05.013 Valino, 2019, Advances in 3D printing of thermoplastic polymer composites and nanocomposites, Prog Polym Sci, 98, 101162, 10.1016/j.progpolymsci.2019.101162 Kai CC, Fai LK, Rapid Prototyping. WORLD SCIENTIFIC, 2000Available: https://doi.org/10.1142/4605. 10.1142/4605. Novakova-Marcincinova L, Novak-Marcincin J, Barna J, Torok J, “Special materials used in FDM rapid prototyping technology application,” in June 2012, pp. 73-76. doi:10.1109/INES.2012.6249805. Dudek P, “FDM 3D printing technology in manufacturing composite elements,” Archives of Metallurgy and Materials, (Vol. 58, iss. 4), pp. 1415-1418, 2013. Available: https://www.infona.pl//resource/bwmeta1.element.baztech-09aa96d2-9dc4-4cae-bd09-e57b2cc16e66. doi:10.2478/amm-2013-0186. Tekinalp, 2014, Highly oriented carbon fiber–polymer composites via additive manufacturing, Compos Sci Technol, 105, 144, 10.1016/j.compscitech.2014.10.009 Masood SH, “10.04 - advances in fused deposition modeling,” In Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne and B. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 69-91Available: https://www.sciencedirect.com/science/article/pii/B9780080965321010025. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV, “Nanofiber-reinforced polymers prepared by fused deposition modeling,” Journal of Applied Polymer Science, vol. 89, (11), pp. 3081-3090, 2003. doi:10.1002/app.12496. Karsli NG, Aytac A, “Composites Part B Engineering,” vol. 51, pp. 270-275, August 1, 2013. Available: https://www.sciencedirect.com/science/article/pii/S135983681300125X. Kinet, 2014, Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions, Sensors, 14, 7394, 10.3390/s140407394 Shubhra, 2013, Mechanical properties of polypropylene composites: A review, J Thermoplast Compos Mater, 26, 362, 10.1177/0892705711428659 Arab MG, Omar M, Alotaibi E, Mostafa O, Naeem M, Badr O, “Bio-Inspired 3D-Printed Honeycomb for Soil Reinforcement,” pp. 262-271, /02/21, 2020. doi: 10.1061/9780784482834.029. Katzer J, Szatkiewicz T, “Effect of 3D Printed Spatial Reinforcement on Flexural Characteristics of Conventional Mortar,” Materials, vol. 13, (14), pp. 3133, 2020. doi:10.3390/ma13143133. Yuan, 2018, Form finding for 3d printed pedestrian bridges Farina, 2016, On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers, Compos B Eng, 90, 76, 10.1016/j.compositesb.2015.12.006 Xu Y, Šavija B, “Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties,” Composites Part B: Engineering, vol. 174, pp. 107011, 2019. Available: https://www.sciencedirect.com/science/article/pii/S1359836819303245. doi:10.1016/j.compositesb.2019.107011. Salazar B, Aghdasi P, Williams ID, Ostertag CP, Taylor HK, “Polymer lattice-reinforcement for enhancing ductility of concrete,” Materials & Design, vol. 196, pp. 109184, November 1, 2020. Available: https://www.sciencedirect.com/science/article/pii/S026412752030719X. doi:10.1016/j.matdes.2020.109184. Issa MS, Metwally IM, Elzeiny SM, “Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars,” Engineering Structures, vol. 33, (5), pp. 1754-1763, May 1, 2011. Available: https://www.sciencedirect.com/science/article/pii/S014102961100085X. doi:10.1016/j.engstruct.2011.02.014. Vijay PV, GangaRao HVS, “Bending Behavior and Deformability of Glass Fiber-Reinforced Polymer Reinforced Concrete Members,” Sj, vol. 98, (6), pp. 834-842, /11/01, 2001. Available: https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10750. doi:10.14359/10750. Jaeger LG, Mufti AA, Tadros G, “The concept of the overall performance factor in rectangular-section reinforced concrete members,” In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 1997, pp. 551-559. Toutanji, 1999, Performance of concrete beams prestressed with aramid fiber-reinforced polymer tendons, Compos Struct, 44, 63, 10.1016/S0263-8223(98)00126-3 Naaman, 1995, 45 structural ductility of concrete beams prestressed with frp tendons, 379 Cohn MZ, Bartlett M, “Computer-Simulated Flexural Tests of Partially Prestressed Concrete Sections,” Journal of the Structural Division, vol. 108, (12), pp. 2747-2765, /12/01, 1982. doi:10.1061/JSDEAG.0006103. Azizinamini A, Pavel R, Hatfield E, Ghosh S, “Behavior of Lap-Spliced Reinforcing Bars Embedded in High-Strength Concrete,” ACI Structural Journal, 1999. Available: https://www.semanticscholar.org/paper/Behavior-of-Lap-Spliced-Reinforcing-Bars-Embedded-Azizinamini-Pavel/dfdba163b8e6c5784c0215879d6f90d3324f972f?p2df. doi:10.14359/737. Grace, 1998, Behavior and Ductility of Simple and Continuous FRP Reinforced Beams, J Compos Constr, 2, 186, 10.1061/(ASCE)1090-0268(1998)2:4(186) American Society for Testing and Materials. Committee C-1 on Cement, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens). ASTM International, 2013. The Mathworks Inc., “MATLAB,” vol. R2021a, 2021. Tanikella, 2017, Tensile strength of commercial polymer materials for fused filament fabrication 3D printing, Addit Manuf, 15, 40